...
首页> 外文期刊>Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics >Tuning microstructure and enhancing mechanical properties of Co-Ni-V-Al medium entropy alloy thin films via deposition power
【24h】

Tuning microstructure and enhancing mechanical properties of Co-Ni-V-Al medium entropy alloy thin films via deposition power

机译:通过沉积功率调节微观结构和增强CO-Ni-V-Al中熵合金薄膜的力学性能

获取原文
获取原文并翻译 | 示例
           

摘要

Recently, medium-entropy alloys (MEAs) combining high hardness with excellent ductility have attracted numerous attentions. Here we synthesize a series of Co-Ni-V-Al MEA thin films by magnetron sputtering at room temperature with deposition power from 60 W to 300 W. The film microstructure, morphology, and mechanical properties depended remarkably on atomic fluence, proportional to deposition power. With increasing atomic fluence, the amorphous phase fraction experienced a process of first decreasing and then increasing, and fully amorphous structure was obtained at 300 W. Surface diffusion is dominated in low incident atomic energy range, while deposition rate effect is dominant over surface diffusion effect in high incident atomic energy range, resulting in the crossover in phase selection. The nanocolumn size increased with atomic fluence from 60 W-films to 150 W-films, accompanied by roughness rise, and remained constant with further increasing atomic fluence, along with roughness drop caused by fully amorphous structure. Excellent mechanical properties including higher hardness, tensile fracture strength, lateral Young's modulus, better scratch-resistance, lower coefficient of friction, were observed for higher incident atomic energy films. In low atomic fluence range from 60 W-films to 150 W-films, the improved mechanical response mainly come from the reduced fraction of interfacial region between adjacent nanocolumns. Further increasing atomic fluence, it is the bombardment-induced dense nanocolumn boundaries, rather than enhanced adatom diffusion at high atomic fluence, that cause further improved mechanical response. Our current work could pave a way for a controlled synthesis of high-performance MEA thin films via tuning deposition power.
机译:近年来,结合高硬度和良好延展性的中熵合金(MEA)引起了人们的广泛关注。在这里,我们在室温下用磁控溅射法合成了一系列Co-Ni-V-Al MEA薄膜,沉积功率从60 W到300 W。薄膜的微观结构、形貌和机械性能显著依赖于原子注量,与沉积功率成正比。随着原子注量的增加,非晶相分数经历了先减小后增大的过程,在300W时获得了完全非晶结构。在低入射原子能范围内,表面扩散占主导地位,而在高入射原子能范围内,沉积速率效应占主导地位,导致相位选择中的交叉。纳米柱的尺寸随着原子注量的增加而增加,从60 W-薄膜增加到150 W-薄膜,伴随着粗糙度的增加,并且随着原子注量的进一步增加而保持不变,同时伴随着完全非晶态结构导致的粗糙度下降。高入射原子能薄膜具有较高的硬度、拉伸断裂强度、侧向杨氏模量、较好的耐划伤性和较低的摩擦系数。在60-150 W膜的低原子通量范围内,机械响应的改善主要来自相邻纳米柱之间界面区域的减少。原子注量的进一步增加,是轰击诱导的致密纳米柱边界,而不是在高原子注量下增强的吸附原子扩散,导致了机械响应的进一步改善。我们目前的工作为通过调节沉积功率控制合成高性能MEA薄膜铺平了道路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号