...
首页> 外文期刊>Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics >Bipolar, complementary resistive switching and synaptic properties of sputtering deposited ZnSnO-based devices for electronic synapses
【24h】

Bipolar, complementary resistive switching and synaptic properties of sputtering deposited ZnSnO-based devices for electronic synapses

机译:用于电子突触的溅射沉积的基于ZnSNO的装置的双极,互补电阻切换和突触特性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this work, ZnSnO based resistive switching (RS) devices were fabricated with different top electrodes (TEs) to investigate the RS and synaptic characteristics for neuromorphic systems. The Ta/ZnSnO/TiN device exhibits excellent endurance (2000 DC cycles), longer retention (10(4) s), reliable multilevel retention (10(3) s) with six distinct resistance states via controlling the reset-stop voltage, and low forming/set voltages with high uniformity. Besides, complementary RS (CRS) behavior is observed in Ta/ZnSnO/TiN device at appropriate current compliance (CC, 5 mA) instead of low (600 mu A) and high (10 mA) CC, respectively. X-ray photoelectron spectroscopy (XPS) analysis confirms that both TaO and TiON interface layers are formed at the top Ta/ZnSnO and bottom ZnSnO/TiN interfaces, which are found responsible for CRS behavior. Furthermore, XPS analysis also confirmed that the concentration of oxygen vacancies near the bottom ZnSnO/TiON interface is greater than the oxygen vacancies concentration near the top TaO/ZnSnO interface. Based on the XPS analysis, the switching phenomenon is confined in ZnSnO/TaON bottom interface because of its higher oxygen vacancy levels (prevent oxygen loss) in contrast to the TaO/ZnSnO top interface where the ZnSnO layer acts as series resistances in between these two interfaces. The basic features of an artificial synapse, LTP/ LTD, PPF/ PPD, and STDP, were successfully emulated using a Ta/ZnSnO/TiN device, suggesting potential applications for neuromorphic hardware systems. (C) 2020 Elsevier B.V. All rights reserved.
机译:在这项工作中,基于ZnSnO的电阻开关(RS)器件采用不同的顶部电极(TE)来研究神经形态系统的RS和突触特性。Ta/ZnSnO/TiN器件具有优异的耐久性(2000个直流周期)、更长的保持时间(10(4)s)、可靠的多级保持时间(10(3)s),通过控制复位停止电压,具有六种不同的电阻状态,以及具有高均匀性的低形成/设置电压。此外,Ta/ZnSnO/TiN器件在适当的电流顺应性(CC,5ma)下观察到了互补RS(CRS)行为,而不是分别在低电流顺应性(600μA)和高电流顺应性(10ma)下观察到互补RS(CRS)行为。X射线光电子能谱(XPS)分析证实,TaO和离子界面层均形成于Ta/ZnSnO的顶部和ZnSnO/TiN的底部界面,这两个界面被发现对CRS行为负责。此外,XPS分析也证实了底部ZnSnO/TiON界面附近的氧空位浓度大于顶部TaO/ZnSnO界面附近的氧空位浓度。根据XPS分析,开关现象局限于ZnSnO/TaON底界面,因为其氧空位水平较高(防止氧损失),而TaO/ZnSnO顶界面的ZnSnO层在这两个界面之间起串联电阻的作用。人工突触LTP/LTD、PPF/PPD和STDP的基本特征已使用Ta/ZnSnO/TiN设备成功模拟,表明其在神经形态硬件系统中具有潜在的应用前景。(C) 2020爱思唯尔B.V.版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号