...
首页> 外文期刊>Catena: An Interdisciplinary Journal of Soil Science Hydrology-Geomorphology Focusing on Geoecology and Landscape Evolution >Potential CO2 emissions from defrosting permafrost soils of the Qinghai-Tibet Plateau under different scenarios of climate change in 2050 and 2070
【24h】

Potential CO2 emissions from defrosting permafrost soils of the Qinghai-Tibet Plateau under different scenarios of climate change in 2050 and 2070

机译:2050年和2070年在气候变化的不同情景下,青藏高原除霜土壤的潜在二氧化碳排放

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Permafrost soils store enormous quantities of organic carbon. Especially on the alpine Qinghai-Tibet Plateau, global warming induces strong permafrost thawing, which strengthens the microbial decomposition of organic carbon and the emission of the greenhouse gas carbon dioxide (CO2). Enhanced respiration rates may intensify climate warming in turn, but the magnitude of future CO2 emissions from this data-scarce region in a changing climate remains highly uncertain. Here, we aim at an area-wide estimation of future potential CO2 emissions for the permafrost region on the Qinghai-Tibet Plateau as key region for climate change studies due to its size and sensitiveness. We calculated four potential soil respiration scenarios for 2050 and 2070 each. Using a regression model, results from laboratory experiments and C stock estimations from other studies, we provide an approximation of total potential soil CO2 emissions on a regional scale ranging from 737.90 g CO2 m(-2) 4224.77 g CO2 m(-2) y(-1). Our calculations as first estimate of thawing-induced CO2 emissions (5123 g CO2 m(-2) y(-1)-3002.82 g CO2 m(2) y(-1)) from permafrost soils of the Qinghai-Tibet Plateau under global warming appear to be consistent to measurements of C loss from thawing permafrost soils measured within other studies. Thawing-induced soil CO2 emissions from permafrost soils with a organic C content ranging from 2.42 g degrees C kg(-1) to 425.23 g C kg(-1) increase general soil respiration by at least about one third on average at a temperature of 5 degrees C. Differences between scenarios remain 1% and thawing-induced CO2 emissions generally decrease over time comparing 2015, 2050 and 2070. With this spatial approximation at a regional scale, a first area-wide estimate of potential CO2 emissions for 2050 and 2070 from permafrost soils of the Qinghai-Tibet Plateau is provided. This offers support of assessing potential area-specific greenhouse gas emissions and more differentiated climate change models. (C) 2016 Elsevier B.V. All rights reserved.
机译:永久冻土储存了大量的有机碳。特别是在高寒的青藏高原,全球变暖导致永久冻土强烈融化,从而加强了有机碳的微生物分解和温室气体二氧化碳(CO2)的排放。呼吸速率的增强可能反过来加剧气候变暖,但在气候变化的情况下,这一数据稀缺地区未来二氧化碳排放量的大小仍然高度不确定。在这里,我们的目标是对青藏高原多年冻土区未来潜在的二氧化碳排放量进行全区估算,由于其规模和敏感性,青藏高原多年冻土区是气候变化研究的关键区域。我们分别计算了2050年和2070年的四种潜在土壤呼吸情景。利用回归模型、实验室实验结果和其他研究的碳储量估算,我们提供了区域范围内总潜在土壤CO2排放量的近似值,范围为737.90 g CO2 m(-2)4224.77 g CO2 m(-2)y(-1)。我们对全球变暖条件下青藏高原冻土融化引起的CO2排放量(5123 g CO2 m(-2)y(-1)-3002.82 g CO2 m(2)y(-1))的首次估算,似乎与其他研究中测量的冻土融化引起的C损失的测量结果一致。从有机碳含量在2.42 g C kg(-1)到425.23 g C kg(-1)范围内的永久冻土土壤中,解冻引起的土壤CO2排放在5℃的温度下平均增加至少三分之一的一般土壤呼吸。不同情景之间的差异仍然存在;与2015年、2050年和2070年相比,融化导致的二氧化碳排放量通常会随着时间的推移而减少1%。利用这种区域尺度的空间近似,首次对青藏高原多年冻土在2050年和2070年的潜在CO2排放量进行了区域范围的估算。这为评估潜在的特定区域温室气体排放和更具差异性的气候变化模型提供了支持。(C) 2016爱思唯尔B.V.版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号