首页> 外文期刊>Analytical chemistry >Imparting Biomimetic Ion-Gating Recognition Properties to Electrodes with a Hydrogen-Bonding Structured Core-Shell Nanoparticle Network
【24h】

Imparting Biomimetic Ion-Gating Recognition Properties to Electrodes with a Hydrogen-Bonding Structured Core-Shell Nanoparticle Network

机译:氢键结构核-壳纳米粒子网络的仿生离子门识别性能赋予电极。

获取原文
获取原文并翻译 | 示例
       

摘要

This paper presents findings of the creation of biomimetic ion-gating properties with core-shell nanoparticle network architectures. The architectures were formed by hydrogen-bonding linkages via an exchange-cross-linking-precipitation reaction pathway using gold nanoparticles capped with thiolate shell and alkylthiols terminated with carboxylic groups as model building blocks. Such network assemblies have open frameworks in which void space is in the form of a channel or chamber with the nanometer-sized cores defining its size, the geometric arrangement defining its shape, and the shell structures defining its chemical specificity. The formation of the network linkages via head-to-head hydrogen-bonded carboxylic terminals and the reversible pH-tuned structural properties between neutral and ionic states were characterized using infrared reflectance spectroscopic technique. The biomimetic ion-gating properties were demonstrated by measuring the pH-tuned network "open-close" responses to charged redox probes. Such redox responses were shown to depend on the degree of protonation-deprotonation of carboxylic groups at the interparticle linkages, core sizes of the nanoparticles, and charges of the redox probes. Differences in structural networking, pH-tuning, and electrochemical gating properties were identified between the network films derived from nanoparticles of two different core sizes (2 and 5 nm). The mechanistic correlation of these structural properties was discussed. These findings have added a new pathway to the current approaches to biomimetic molecular recognition via design of core-shell nanoparticle architectures at both nanocrystal and molecular scales.
机译:本文介绍了利用核-壳纳米粒子网络架构创建仿生离子门控特性的发现。该体系结构是通过氢键键合通过交换-交联-沉淀反应途径而形成的,该方法使用覆盖有硫醇盐壳的金纳米颗粒和以羧基封端的烷基硫醇作为模型构建基块。这样的网络组件具有开放的框架,其中空隙空间为通道或腔室的形式,其中纳米级的核定义了其尺寸,几何排列定义了其形状,壳结构定义了其化学特异性。使用红外反射光谱技术表征了通过头对头氢键合的羧基末端形成的网络键以及中性和离子态之间可逆的pH调节结构性质。通过测量pH调节网络对带电氧化还原探针的“开-关”响应,证明了仿生离子门控性能。已表明这种氧化还原反应取决于在颗粒间键处的羧基的质子化-去质子化程度,纳米颗粒的核尺寸以及氧化还原探针的电荷。在两种不同核心尺寸(2和5 nm)的纳米颗粒衍生的网络膜之间,在结构网络,pH调节和电化学门控特性方面存在差异。讨论了这些结构特性的机械相关性。这些发现通过在纳米晶体和分子尺度上设计核-壳纳米颗粒结构,为目前的仿生分子识别方法增加了一条新途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号