...
首页> 外文期刊>Analytical chemistry >Observation of increased ion cyclotron resonance signal duration through electric field perturbations
【24h】

Observation of increased ion cyclotron resonance signal duration through electric field perturbations

机译:通过电场扰动观察离子回旋加速器共振信号持续时间的增加

获取原文
获取原文并翻译 | 示例
           

摘要

Ion motion in Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) is complex and the subject of ongoing theoretical and experimental studies. Two predominant pathways for the loss of ICR signals are thought to include damping of cyclotron motion, in which ions lose kinetic energy and radially damp toward the center of the ICR cell, and dephasing of ion coherence, in which ions of like cyclotron frequency become distributed out of phase at similar cyclotron radii. Both mechanisms result in the loss of induced ion image current in FTICR-MS measurements and are normally inseparable during time-domain signal analysis. For conventional ICR measurements which take advantage of ion ensembles, maximization of the ion population size and density can produce the desired effect of increasing phase coherence of ions during cyclotron motion. However, this approach also presents the risk of coalescence of ion packets of similar frequencies. In general, ICR researchers in the past have lacked the tools necessary to distinguish or independently control dephasing and damping mechanisms for ICR signal loss. Nonetheless, the ability to impart greater phase coherence of ions in ICR measurements will allow significant advances in FTICR-MS research by improving the current understanding of ICR signal loss contributions of dephasing and damping of ion ensembles, increasing overall time-domain signal length, and possibly, resulting in more routine ultrahigh resolution measurements. The results presented here demonstrate the ability to employ a high density electron beam to perturb electric fields within the ICR cell during detection of cyclotron motion, in an approach we call electron-promoted ion coherence (EPIC). As such, EPIC reduces ICR signal degradation through loss of phase coherence, and much longer time-domain signals can be obtained. Our results demonstrate that time-domain signals can be extended by more than a factor of 4 with the implementation of EPIC, as compared to conventional experiments with otherwise identical conditions. The application of EPIC has also been observed to reduce the appearance of peak coalescence. These capabilities are not yet fully optimized nor fully understood in terms of the complex physics that underlies the enhancement. However, the enhanced time-domain signals can result in improved resolution in frequency-domain signals, and as such, this result is important for more efficient utilization of FTICR-MS. High resolution and accurate mass analysis are prime motivating factors in the application of advanced FTICR technology. We believe the approach presented here and derivatives from it may have significant benefit in future applications of advanced FTICR technology.
机译:傅里叶变换离子回旋共振质谱(FTICR-MS)中的离子运动是复杂的,并且是正在进行的理论和实验研究的主题。 ICR信号丢失的两个主要途径被认为包括回旋加速器运动的衰减(其中离子失去动能并向ICR电池的中心径向衰减)和离子相干性的移相(其中回旋加速器频率类似的离子被分布)在类似的回旋加速器半径处异相。两种机制都会导致FTICR-MS测量中感应离子图像电流的损失,并且通常在时域信号分析期间是不可分割的。对于利用离子集合的常规ICR测量,最大化离子种群大小和密度可以产生在回旋加速器运动期间增加离子相干性的理想效果。但是,这种方法也存在相似频率的离子包合并的风险。通常,过去的ICR研究人员缺乏区分或独立控制ICR信号丢失的相移和阻尼机制所必需的工具。尽管如此,在ICR测量中赋予离子更大的相位相干性的能力将通过改善当前对离子相移相和阻尼的ICR信号损耗贡献,增加整体时域信号长度以及增加对ICR信号损耗贡献的认识,从而使FTICR-MS研究取得重大进展。可能会导致更多常规超高分辨率测量。本文介绍的结果证明了在检测回旋加速器运动期间采用高密度电子束扰动ICR电池内电场的能力,这种方法称为电子促进离子相干(EPIC)。这样,EPIC通过丢失相位相干性来减少ICR信号劣化,并且可以获得更长的时域信号。我们的结果表明,与具有其他相同条件的常规实验相比,采用EPIC可以将时域信号扩展4倍以上。还观察到EPIC的应用可以减少峰聚结的出现。这些功能尚未得到充分优化,也无法从增强功能的基础上全面理解。但是,增强的时域信号可以提高频域信号的分辨率,因此,此结果对于FTICR-MS的更有效利用非常重要。高分辨率和准确的质量分析是先进FTICR技术应用的主要推动因素。我们相信,此处介绍的方法及其衍生的方法可能会在高级FTICR技术的未来应用中获得重大利益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号