...
首页> 外文期刊>Biochimica et biophysica acta. Biomembranes >G protein-coupled receptors of class A harness the energy of membrane potential to increase their sensitivity and selectivity
【24h】

G protein-coupled receptors of class A harness the energy of membrane potential to increase their sensitivity and selectivity

机译:G蛋白偶联的A类接种膜势能的能量,以提高其敏感性和选择性

获取原文
获取原文并翻译 | 示例

摘要

The human genome contains about 700 genes of G protein-coupled receptors (GPCRs) of class A; these seven-helical membrane proteins are the targets of almost half of all known drugs. In the middle of the helix bundle, crystal structures reveal a highly conserved sodium-binding site, which is connected with the extracellular side by a water-filled tunnel. This binding site contains a sodium ion in those GPCRs that are crystallized in their inactive conformations but does not in those GPCRs that are trapped in agonist-bound active conformations. The escape route of the sodium ion upon the inactive-to-active transition and its very direction have until now remained obscure. Here, by modeling the available experimental data, we show that the sodium gradient over the cell membrane increases the sensitivity of GPCRs if their activation is thermodynamically coupled to the sodium ion translocation into the cytoplasm but decreases it if the sodium ion retreats into the extracellular space upon receptor activation. The model quantitatively describes the available data on both activation and suppression of distinct GPCRs by membrane voltage. The model also predicts selective amplification of the signal from (endogenous) agonists if only they, but not their (partial) analogs, induce sodium translocation. Comparative structure and sequence analyses of sodium-binding GPCRs indicate a key role for the conserved leucine residue in the second transmembrane helix (Leu2.46) in coupling sodium translocation to receptor activation. Hence, class A GPCRs appear to harness the energy of the transmembrane sodium potential to increase their sensitivity and selectivity.
机译:人类基因组含有约700个基因的A类的G蛋白偶联受体(GPCR);这七螺旋膜蛋白质是近一半的所有已知药物的靶标。在螺旋束的中间,晶体结构显示出高度保守的钠结合位点,其通过填充隧道与细胞外侧连接。该结合位点在那些GPCR中含有钠离子,其在其无活性构象中结晶,但不在捕获激动剂束的主动构象中的那些GPCR中。钠离子在无效到主动过渡和其非常方向上的逃逸路线直到现在仍然模糊。这里,通过建模可用的实验数据,我们表明,如果其活化在热力地偶联到细胞质中的钠离子易位,则可以增加细胞膜上的梯度增加GPCR的敏感性,但如果钠离子撤退到细胞外空间中,则会降低其受体激活后。该模型定量地描述了通过膜电压的激活和抑制不同GPCR的可用数据。该模型还预测,如果只有它们,但不是它们的(部分)类似物,诱导钠易位,则可以预测来自(内源)激动剂的信号的选择性扩增。钠结合GPCR的比较结构和序列分析表明在偶联钠易位与受体活化中的第二跨膜螺旋(Leu2.46)中的保守亮氨酸残基的关键作用。因此,A类GPCR似乎利用跨膜钠潜力的能量来提高它们的敏感性和选择性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号