首页> 外文期刊>Biotechnology Advances: An International Review Journal >Metabolic engineering of Saccharomyces cerevisiae for the production of top value chemicals from biorefinery carbohydrates
【24h】

Metabolic engineering of Saccharomyces cerevisiae for the production of top value chemicals from biorefinery carbohydrates

机译:酿酒酵母的代谢工程,用于生产碳水化合物的彩色素化化学品

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The implementation of biorefineries for a cost-effective and sustainable production of energy and chemicals from renewable carbon sources plays a fundamental role in the transition to a circular economy. The US Department of Energy identified a group of key target compounds that can be produced from biorefinery carbohydrates. In 2010, this list was revised and included organic acids (lactic, succinic, levulinic and 3-hydroxypropionic acids), sugar alcohols (xylitol and sorbitol), furans and derivatives (hydroxymethylfurfural, furfural and furandicarboxylic acid), biohydrocarbons (isoprene), and glycerol and its derivatives. The use of substrates like lignocellulosic biomass that impose harsh culture conditions drives the quest for the selection of suitable robust microorganisms. The yeast Saccharomyces cerevisiae, widely utilized in industrial processes, has been extensively engineered to produce high-value chemicals. For its robustness, ease of handling, genetic toolbox and fitness in an industrial context, S. cerevisiae is an ideal platform for the founding of sustainable bioprocesses. Taking these into account, this review focuses on metabolic engineering strategies that have been applied to S. cerevisiae for converting renewable resources into the previously identified chemical targets. The heterogeneity of each chemical and its manufacturing process leads to inevitable differences between the development stages of each process. Currently, 8 of 11 of these top value chemicals have been already reported to be produced by recombinant S. cerevisiae. While some of them are still in an early proof-of-concept stage, others, like xylitol or lactic acid, are already being produced from lignocellulosic biomass. Furthermore, the constant advances in genomeediting tools, e.g. CRISPR/Cas9, coupled with the application of innovative process concepts such as consolidated bioprocessing, will contribute for the establishment of S. cerevisiae-based biorefineries.
机译:对可再生碳源的成本效益和可持续生产能源和化学品的生物归还的实施在向循环经济过渡中起着重要作用。美国能源部鉴定了一组可从生物甘油碳水化合物生产的关键目标化合物。 2010年,该清单被修改并包括有机酸(乳酸,琥珀酸,乙酰丙烯酸和3-羟基丙酸),糖醇(木糖醇和山梨糖醇),呋喃和衍生物(羟甲基糠醛,糠醛和呋喃酸),生物氢碳(异戊二烯)和甘油及其衍生物。使用诸如木质纤维素生物质等底物的使用,其施加苛刻的培养条件驱动了选择合适的鲁棒微生物的任务。广泛用于工业过程的酵母酿酒酵母酿酒酵母被广泛地设计成生产高价值化学品。为了其鲁棒性,易于处理,遗传工具箱和工业背景中的健身,S.Cerevisiae是建立可持续生物过程的理想平台。考虑到这些审查,本综述重点介绍已应用于S. Cerevisiae的代谢工程策略,以将可再生资源转换为先前已识别的化学目标。每种化学物质及其制造过程的异质性导致每个过程的发育阶段之间的不可避免的差异。目前,已经举报了这些顶部价值化学物质中的8个中的8个是通过重组的S. Cerevisiae生产的。虽然它们中的一些仍处于早期概念阶段,但是,如木质醇或乳酸,如木质纤维素生物质已经产生。此外,总因的工具中的恒定进步,例如, CARRPR / CAS9加上综合生物处理等创新过程概念的应用,将有助于建立基于酿酒酵母的生物档。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号