首页> 外文期刊>Biomedical materials >Polymer-coated microparticle scaffolds engineered for potential use in musculoskeletal tissue regeneration
【24h】

Polymer-coated microparticle scaffolds engineered for potential use in musculoskeletal tissue regeneration

机译:聚合物涂层微粒支架,用于潜在使用在肌肉骨骼组织再生中

获取原文
获取原文并翻译 | 示例
           

摘要

Biomaterials constructed exclusively of sintered microspheres have great potential in tissue engineering scaffold applications, offering the ability to create shape-specific scaffolds with precise controlled release yet to be matched by traditional additive manufacturing methods. The problem is that these microsphere-based scaffolds are limited in their stiffness for applications such as bone regeneration. Our vision to solve this problem was borne from a hierarchical structure perspective, focusing on the individual unit of the structure: the microsphere itself. In a core-shell approach, we envisioned a stiff core to create a stiff microsphere unit, with a polymeric shell that would enable sintering to the other microsphere units. Therefore, the current study provided a comparison of macroscopic biomaterials built on either polymer microspheres or polymer-coated hard glass microspheres. Identical polycaprolactone (PCL) polymer solutions were used to fabricate microspheres and as a thin coating on soda lime glass microspheres (hard phase). The materials were characterized as loose particles and as scaffolds via scanning electron microscopy, thermogravimetry, differential scanning calorimetry, Raman spectroscopy, mechanical testing, and a live/dead analysis with human umbilical cord-derived Wharton's jelly cells. The elastic modulus of the scaffolds with the thinly coated hard phase was about five times higher with glass microspheres (up to about 25 MPa) than pure polymer microspheres, while retaining the structure, cell adhesion, and chemical properties of the PCL polymer. This proof-of-concept study demonstrated the ability to achieve at least a five-fold increase in macroscopic stiffness via altering the core microsphere units with a core-shell approach.
机译:专用于烧结微球构造的生物材料在组织工程支架应用中具有很大的潜力,提供了具有精确控制释放的形状特异性支架的能力,尚不通过传统的添加剂制造方法匹配。问题是这些基于微球基的支架在诸如骨再生的应用的刚度中受到限制。我们解决这个问题的愿景是从层次结构的角度而成的,专注于结构的各个单位:微球本身。在核心壳的方法中,我们设想了一种坚硬的核心以产生僵硬的微球单元,具有聚合物壳,其能够使其烧结到另一个微球单元。因此,目前的研究提供了基于聚合物微球或聚合物涂覆的硬玻璃微球的宏观生物材料的比较。使用相同的聚己内酯(PCL)聚合物溶液制造微球和钠钙玻璃微球(硬相)上的薄涂层。通过扫描电子显微镜,热重试验,差示扫描量热法,拉曼光谱,机械测试以及用人脐带衍生的沃顿果冻细胞的实时/死亡分析,将这些材料表征为松散的颗粒和作为支架。具有薄涂覆的硬相的支架的弹性模量比纯聚合物微球(高达约25MPa)高约5倍,同时保留PCL聚合物的结构,电池粘附和化学性质。这种概念证明研究证明了通过用核心壳方法改变核心微球单元来实现宏观刚度的至少五倍增加的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号