首页> 中文期刊>生命科学与技术进展(英文) >Regeneration of Hyaline Cartilage Using a Mechanically-Tuned Chondrocyte-Seeded Biomimetic Tissue-Engineered 3D Scaffold: A Theoretical Approach

Regeneration of Hyaline Cartilage Using a Mechanically-Tuned Chondrocyte-Seeded Biomimetic Tissue-Engineered 3D Scaffold: A Theoretical Approach

     

摘要

The limited ability of cartilage tissue to repair itself poses a functionally impairing health problem. While many treatment methods are available, full restoration of the tissue to its original state is rare. Often, complete joint replacement surgery is required to obtain long-term relief. Tissue engineering approaches, however, provide new opportunities for cartilage replacement. They seek to provide mechanisms to repair or replace lost tissue or function. A theoretical method is presented here for regenerating hyaline cartilage in vitro using a chondrocyte-seeded three-dimensional biomimetic engineered scaffold with mechanical properties similar to those occurring naturally. The scaffold composition, type II collagen, aggrecan, hyaluronan, hyaluronan binding protein (for link protein), and BMP-7, were chosen to encourage synthesis of hyaline cartilage by providing a more native environment and signaling cue for the seeded chondrocytes. The scaffold components mimic the macrofibrillar collagen network found in articular cartilage. Type II collagen provides tensile strength, and aggrecan, the predominant proteoglycan, provides compressive strength.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号