...
首页> 外文期刊>Analytical chemistry >Optimization of particle dimensions for high efficiency in capillary electrochromatography
【24h】

Optimization of particle dimensions for high efficiency in capillary electrochromatography

机译:优化粒径以在毛细管电色谱中实现高效

获取原文
获取原文并翻译 | 示例
           

摘要

An experimental study has been performed on electroosmotic flow (EOF) development in packed columns for CEC. The intraparticle EOF velocities have been measured, relative to the interstitial fluid velocity, with particles of various pore size and solutions of various ionic strength. Based on the experimental findings, the optimal particle diameter and pore size have been predicted for CEC with respect to speed (EOF velocity) and separation efficiency. Suitable EOF may be created through columns packed with particles as small as 20 nm in diameter. However, to take advantage of the flat flow profile, particles of 80 nm in diameter or larger can be used. A high perfusive EOF may be generated with pore sizes as small as 5 nm, although a pore size of 30 nm may be optimal with respect to pore-to-interstitial flow ratio, required ionic strength, and separation efficiency. It is argued that this pore diameter may also be optimal for the flow channels in monolithic/continuous columns in CEC with respect to separation efficiency. However, when axial diffusion and thermal effects are taken into account, the optimal particle diameter for CEC may be much larger than that following from just considering the EOF development. To limit axial diffusion in columns with 80-nm-diameter particles, the electrical field strength should be > 10(6) V/M, which is much higher than can be applied with commercial equipment When considering field strengths that may be applied with present instrumentation, the optimal particle diameter for CEC is in the order of 0.5-1.0 mum. The combination of the required high field strengths and high ionic strengths sets limits to the column diameter in order to prevent significant band broadening due to thermal effects. When columns packed with particles of the specified dimensions can be effectively operated in CEC, plate numbers well over 106 may be generated in short times. [References: 36]
机译:已经进行了针对CEC填充塔中电渗流(EOF)展开的实验研究。相对于间隙流体速度,已经测量了具有不同孔径的颗粒和具有各种离子强度的溶液的颗粒内EOF速度。基于实验结果,已经针对速度(EOF速度)和分离效率预测了CEC的最佳粒径和孔径。可以通过填充直径小至20 nm的颗粒的色谱柱来创建合适的EOF。但是,为了利用平坦的流动曲线,可以使用直径为80 nm或更大的颗粒。尽管对于孔与间隙的流动比,所需的离子强度和分离效率而言,30nm的孔径可能是最佳的,但是可以产生孔径低至5nm的高灌注EOF。有人认为,就分离效率而言,该孔径对于CEC中整体/连续塔中的流道也可能是最佳的。但是,当考虑轴向扩散和热效应时,仅考虑EOF的发展,CEC的最佳粒径可能比随后的粒径大得多。为了限制直径为80 nm的颗粒在色谱柱中的轴向扩散,电场强度应> 10(6)V / M,这要比考虑到目前可应用的电场强度高得多。在仪器上,CEC的最佳粒径约为0.5-1.0微米。所需的高场强和高离子强度的组合设置了色谱柱直径的限制,以防止由于热效应而导致明显的谱带展宽。当填充有指定尺寸颗粒的色谱柱可以在CEC中有效运行时,可在短时间内产生超过106个板数。 [参考:36]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号