首页> 外文期刊>Antimicrobial agents and chemotherapy. >Rapid Evolution of Reduced Susceptibility against a Balanced Dual-Targeting Antibiotic through Stepping-Stone Mutations
【24h】

Rapid Evolution of Reduced Susceptibility against a Balanced Dual-Targeting Antibiotic through Stepping-Stone Mutations

机译:通过踩踏石突变对平衡双靶向抗生素降低易感性的快速发展

获取原文
获取原文并翻译 | 示例
           

摘要

Multitargeting antibiotics, i.e., single compounds capable of inhibiting two or more bacterial targets, are generally considered to be a promising therapeutic strategy against resistance evolution. The rationale for this theory is that multitargeting antibiotics demand the simultaneous acquisition of multiple mutations at their respective target genes to achieve significant resistance. The theory presumes that individual mutations provide little or no benefit to the bacterial host. Here, we propose that such individual stepping-stone mutations can be prevalent in clinical bacterial isolates, as they provide significant resistance to other antimicrobial agents. To test this possibility, we focused on gepotidacin, an antibiotic candidate that selectively inhibits both bacterial DNA gyrase and topoisomerase IV. In a susceptible organism, Klebsiella pneumoniae, a combination of two specific mutations in these target proteins provide an >2,000-fold reduction in susceptibility, while individually, none of these mutations affect resistance significantly. Alarmingly, strains with decreased susceptibility against gepotidacin are found to be as virulent as the wildtype Klebsiella pneumoniae strain in a murine model. Moreover, numerous pathogenic isolates carry mutations which could promote the evolution of clinically significant reduction of susceptibility against gepotidacin in the future. As might be expected, prolonged exposure to ciprofloxacin, a clinically widely employed gyrase inhibitor, coselected for reduced susceptibility against gepotidacin. We conclude that extensive antibiotic usage could select for mutations that serve as stepping-stones toward resistance against antimicrobial compounds still under development. Our research indicates that even balanced multitargeting antibiotics are prone to resistance evolution.
机译:多靶向抗生素,即能够抑制两种或更多种细菌靶标的单一化合物,通常被认为是对抗抗性进化的有希望的治疗策略。该理论的基本原理是多价抗生素需要在其各自的靶基因上同时采集多种突变,以达到显着的抗性。该理论假定个体突变对细菌宿主提供很少或没有益处。在这里,我们提出这种单独的踩踏石突变在临床细菌分离株中可以普遍,因为它们为其他抗微生物剂提供了显着的抗性。为了测试这种可能性,我们专注于庚酸盐,一种选择性地抑制细菌DNA乙酸和拓扑异构酶IV的抗生素候选者。在敏感的生物体中,这些靶蛋白中的两种特异性突变的组合在易感性下提供> 2,000倍,同时单独地影响抗性显着影响抗性。令人惊讶的是,发现对胃酸的易感性降低的菌株是鼠模型中的野生型Klebsiella肺炎菌株的毒力。此外,许多致病性分离物携带突变,其可以在未来促进临床上显着降低对糖苷酸的敏感性的演变。如可能预期的那样,延长对环丙沙星的临床广泛使用的乙糖苷抑制剂,易于对糖磷脂的敏感性降低。我们得出结论,广泛的抗生素使用可以选择突变,该突变用作仍然正在开发的抗微生物化合物的耐步进石。我们的研究表明,即使是平衡的多元化抗生素也容易发生抵抗进化。

著录项

  • 来源
  • 作者单位

    Hungarian Acad Sci Biol Res Ctr Inst Biochem Synthet &

    Syst Biol Unit Szeged Hungary;

    Hungarian Acad Sci Biol Res Ctr Inst Biochem Synthet &

    Syst Biol Unit Szeged Hungary;

    Hungarian Acad Sci Biol Res Ctr Inst Biochem Synthet &

    Syst Biol Unit Szeged Hungary;

    Univ Szeged MTA SZTE Biomimet Syst Res Grp Szeged Hungary;

    Hungarian Acad Sci Biol Res Ctr Inst Biochem Synthet &

    Syst Biol Unit Szeged Hungary;

    Univ Szeged Dept Med Chem Szeged Hungary;

    Hungarian Acad Sci Biol Res Ctr Inst Biochem Synthet &

    Syst Biol Unit Szeged Hungary;

    Hungarian Acad Sci Biol Res Ctr Inst Biochem Synthet &

    Syst Biol Unit Szeged Hungary;

    Hungarian Acad Sci Biol Res Ctr Inst Biochem Synthet &

    Syst Biol Unit Szeged Hungary;

    Hungarian Acad Sci Biol Res Ctr Inst Biochem Synthet &

    Syst Biol Unit Szeged Hungary;

    Hungarian Acad Sci Biol Res Ctr Inst Biochem Synthet &

    Syst Biol Unit Szeged Hungary;

    Hungarian Acad Sci Biol Res Ctr Inst Biochem Synthet &

    Syst Biol Unit Szeged Hungary;

    Hungarian Acad Sci Biol Res Ctr Nucle Acid Synth Lab Szeged Hungary;

    Hungarian Acad Sci Biol Res Ctr Inst Biochem Synthet &

    Syst Biol Unit Szeged Hungary;

    Hungarian Acad Sci Biol Res Ctr Inst Biochem Synthet &

    Syst Biol Unit Szeged Hungary;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 治疗学;
  • 关键词

    antibiotic resistance; genome engineering; gepotidacin;

    机译:抗生素抗性;基因组工程;庚烷蛋白;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号