首页> 外文期刊>Applied mathematics and computation >Fast switch and spline scheme for accurate inversion of nonlinear functions: The new first choice solution to Kepler's equation
【24h】

Fast switch and spline scheme for accurate inversion of nonlinear functions: The new first choice solution to Kepler's equation

机译:快速开关和花键方案,用于非线性函数的准确反演:开普式方程的新选择解决方案

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Numerically obtaining the inverse of a function is a common task for many scientific problems, often solved using a Newton iteration method. Here we describe an alternative scheme, based on switching variables followed by spline interpolation, which can be applied to monotonic functions under very general conditions. To optimize the algorithm, we designed a specific ultra-fast spline routine. We also derive analytically the theoretical errors of the method and test it on examples that are of interest in physics. In particular, we compute the real branch of Lambert's W(y) function, which is defined as the inverse of xexp (x), and we solve Kepler's equation. In all cases, our predictions for the theoretical errors are in excellent agreement with our numerical results, and are smaller than what could be expected from the general error analysis of spline interpolation by many orders of magnitude, namely by an astonishing 3 x 10(-22) factor for the computation of W in the range W(y) is an element of [0, 10], and by a factor 2 x 10(-4) for Kepler's problem. In our tests, this scheme is much faster than Newton-Raphson method, by a factor in the range 10(-4)-10(-3) for the execution time in the examples, when the values of the inverse function over an entire interval or for a large number of points are requested. For Kepler's equation and tolerance 10(-6) rad, the algorithm outperforms Newton's method for all values of the number of points N >= 2. (C) 2019 Elsevier Inc. All rights reserved.
机译:在数值上获得函数的倒数是许多科学问题的常见任务,通常使用牛顿迭代方法解决。在这里,我们描述了一种替代方案,基于切换变量,然后是花键插值,可以在非常一般的条件下应用于单调函数。为了优化算法,我们设计了特定的超快速样条件。我们还在分析上得出了方法的理论误差,并在物理学中对其进行测试。特别是,我们计算Lambert的W(Y)函数的真实分支,该函数被定义为Xexp(x)的逆,并且我们解决了开普勒的等式。在所有情况下,我们对理论误差的预测与我们的数值结果非常吻合,并且比样条曲线插值的一般误差分析所预期的许多数量级,即令人惊讶的3 x 10( - 22)W(y)范围内的W的计算是[0,10]的元素,并且对于开普勒的问题,由因子2 x 10(-4)。在我们的测试中,该方案比牛顿-Raphson方法快得多,在示例中的执行时间的范围内10(-4)-10(-3)范围内,当整个逆函数的值时请求间隔或大量点。对于开普勒的等式和公差10(-6)Rad,算法优于Newton的所有值N> = 2.(c)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号