首页> 外文期刊>Applied thermal engineering: Design, processes, equipment, economics >Experimental and CFD analysis on thermal performance of Double-Circuit vortex tube (DCVT)-geometrical optimization, energy transfer and flow structural analysis
【24h】

Experimental and CFD analysis on thermal performance of Double-Circuit vortex tube (DCVT)-geometrical optimization, energy transfer and flow structural analysis

机译:双回路涡管热性能的实验和CFD分析(DCVT) - 几何优化,能量转移和流动结构分析

获取原文
获取原文并翻译 | 示例
           

摘要

Three arrangements of hot and cold exhaust locations determine the types of vortex tubes; Parallel vortex tube (PVT, cold and hot are in the same place), Ranque-Hilsch vortex tube (RHVT, cold and hot are in two opposite places) and Double-Circuit vortex tube (DCVT, just like the RI-IVT but an additional low pressure line is added to the hot valve side). This research focuses on a parametric study (experiments and numerical simulations) on Double-Circuit vortex tubes (DCVT). In this study the impact of valve diameter (15-30 mm) and the pressure ratio (extra injection pressure/inlet pressure) on the separation quality is investigated. Also, the flow behavior inside the DCVT with different nondimensional valve diameters is reported and the effect of flow structural patterns on the DCVT performance is discussed. Based on the experimental results, there is an optimum value for each of the nondimensional control valve diameter (D-n, = Dth/D) and the nondimensional pressure (P-ex/P-in) equal to 0.77 and 0.2, respectively. In this research the effects of turbulent flow field, trailing vortices, cooled region volume and turbulent viscosity on thermal capability of the DCVT are reported using an accurate 3D CFD model made based on the experiments. (C) 2017 Elsevier Ltd. All rights reserved.
机译:三个热和冷排气位置的布置决定了涡管的类型;平行涡旋管(PVT,冷和热处于同一个地方),Ranque-Hilsch涡旋管(RHVT,冷和热在两个相反的位置)和双电路涡管(DCVT,就像RI-IVT一样额外的低压线被添加到热阀侧)。该研究侧重于双回路涡管(DCVT)上的参数研究(实验和数值模拟)。在这项研究中,研究了阀门直径(15-30mm)的影响和压力比(额外喷射压力/入口压力)在分离质量上进行了影响。而且,报道了具有不同非尺寸阀直径的DCVT内的流动性,并讨论了流动结构图案对DCVT性能的影响。基于实验结果,每个非潜能控制阀直径(D-N,= DTH / D)的最佳值分别等于0.77和0.2的非潜力压力(P-EX / P-IN)。在该研究中,使用基于实验的精确的3D CFD模型,报道了湍流流场,尾流,冷却区域体积和湍流粘度对DCVT的热能的影响。 (c)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号