首页> 外文期刊>Applied thermal engineering: Design, processes, equipment, economics >Transient modelling and simulation of gas turbine secondary air system
【24h】

Transient modelling and simulation of gas turbine secondary air system

机译:燃气轮机二次空气系统的瞬态建模与仿真

获取原文
获取原文并翻译 | 示例
           

摘要

The behaviour of the jet engine during transient operation and specifically its secondary air system (SAS) is the point of this work. This paper presents a methodological approach to develop a fast, one-dimensional transient platform for preliminary analysis of the flow behaviour in gas turbine engines secondary air system. For this purpose, different elements of the system including rotating chamber, pipe, turbine blade cooling, orifice, and labyrinth seal are modelled in a modular form. The validity of the developed models for each component is checked against experimental/publicly available data. Then, using a flow network simulation approach, the secondary air system of a two-spool turbofan engine is modelled and simulated in transient mode. The coupling effect between volume packing and swirl are considered in the simulation, under two pre-defined scenarios for step and scheduled boundary condition variations. In the step-change scenario, the boundary conditions are changed instantly to represent the flow behaviour of the SAS under extreme operating conditions (i.e. shaft fracture, flameout, etc.). In the scheduled scenario, the boundary conditions vary linearly with time to represent the performance of the SAS under normal operating conditions (i.e. acceleration and deceleration). The key findings include the fact that, under normal engine operation, the flow in the SAS varies smoothly and converges much faster than the primary flow by around one magnitude. Thus, it is reasonable to use steady-state SAS model to simulate SAS flow behaviour under these conditions. However, under extreme conditions (e.g. flameout), which could induce an abrupt change in the primary airflow properties (pressure, temperature), reverse airflow or choking conditions in SAS may be observed. This could result in a malfunction of the SAS, inducing further damages to the engine.
机译:瞬态操作期间喷气发动机的行为,特别是其二级空气系统(SAS)是这项工作的点。本文介绍了一种开发快速,一维瞬态平台的方法方法,用于促进燃气轮机发动机二次空气系统的流动行为初步分析。为此目的,系统的不同元件包括旋转室,管道,涡轮机叶片冷却,孔口和迷宫密封件以模块化形式建模。检查每个组件的开发模型的有效性是否针对实验/公共可用数据进行检查。然后,使用流量网络仿真方法,在瞬态模式下建模和模拟双阀耦合发动机的二次空气系统。在仿真中考虑体积填料和旋涡之间的耦合效果,用于步骤和调度边界条件变化的两个预定义的场景。在逐步变化场景中,边界条件立即改变以表示在极端操作条件下SAS的流动行为(即轴断裂,熄火等)。在预定的场景中,边界条件随时间线性变化,以表示在正常操作条件下的SAS的性能(即加速度和减速度)。关键发现包括以下事实:在正常发动机操作下,SAS中的流量平滑地变化,并收敛比主要流量大约一个幅度更快。因此,使用稳态SAS模型可以合理地在这些条件下模拟SAS流动行为。然而,在极端条件下(例如熄火),可以观察到可以诱导初级气流性质(压力,温度)的突然变化,可以观察到SAS中的反向气流或窒息条件。这可能导致SA的故障,引起发动机的进一步损害。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号