...
首页> 外文期刊>Applied Microbiology and Biotechnology >Stabilization of multimeric sucrose synthase from Acidithiobacillus caldus via immobilization and post-immobilization techniques for synthesis of UDP-glucose
【24h】

Stabilization of multimeric sucrose synthase from Acidithiobacillus caldus via immobilization and post-immobilization techniques for synthesis of UDP-glucose

机译:通过固定化和固定后的耐酸性橡胶的多聚物蔗糖合成酶的稳定化,用于合成UDP - 葡萄糖的后固定技术

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Sucrose synthases (SuSys) have been attracting great interest in recent years in industrial biocatalysis. They can be used for the cost-effective production of uridine 5'-diphosphate glucose (UDP-glucose) or its in situ recycling if coupled to glycosyltransferases on the production of glycosides in the food, pharmaceutical, nutraceutical, and cosmetic industry. In this study, the homotetrameric SuSy from Acidithiobacillus caldus (SuSyAc) was immobilized-stabilized on agarose beads activated with either (i) glyoxyl groups, (ii) cyanogen bromide groups, or (iii) heterogeneously activated with both glyoxyl and positively charged amino groups. The multipoint covalent immobilization of SuSyAc on glyoxyl agarose at pH 10.0 under optimized conditions provided a significant stabilization factor at reaction conditions (pH 5.0 and 45 A degrees C). However, this strategy did not stabilize the enzyme quaternary structure. Thus, a post-immobilization technique using functionalized polymers, such as polyethyleneimine (PEI) and dextran-aldehyde (dexCHO), was applied to cross-link all enzyme subunits. The coating of the optimal SuSyAc immobilized glyoxyl agarose with a bilayer of 25 kDa PEI and 25 kDa dexCHO completely stabilized the quaternary structure of the enzyme. Accordingly, the combination of immobilization and post-immobilization techniques led to a biocatalyst 340-fold more stable than the non-cross-linked biocatalyst, preserving 60% of its initial activity. This biocatalyst produced 256 mM of UDP-glucose in a single batch, accumulating 1 M after five reaction cycles. Therefore, this immobilized enzyme can be of great interest as a biocatalyst to synthesize UDP-glucose.
机译:蔗糖合成酶(Suses)近年来在工业生物分析中引起了极大的兴趣。如果与食品,制药,营养品和化妆品行业的糖苷的生产,可用于尿苷5'-二磷酸葡萄糖(UDP-葡萄糖)或其原位再循环的成本效益生产。在本研究中,将来自酸酐毒蕈酸的同源体苏氏菌(SusyaC)固定在用(I)乙氧基(II)氰基溴化物基团的琼脂糖珠 - (ii)氰基溴化物基团,或(III)用乙醛和带正电荷的氨基而异均匀活化的琼脂糖珠稳定。在优化条件下,在pH10.0下在pH10.0下的糖酰琼脂糖对糖烷基琼脂糖的多点共价固定在反应条件下的显着稳定性因子(pH 5.0和45℃)。然而,这种策略没有稳定酶第四组织结构。因此,使用官能化聚合物如聚乙烯亚胺(PEI)和葡聚糖 - 醛(DEXCHO)的固定后技术用于交联所有酶亚基。用25kDa pei和25kda dexcho的双层的最佳Susyaac固定化糖糖苷的涂层完全稳定了酶的季结构。因此,固定化和固定后技术的组合导致了比非交联生物催化剂更稳定的生物催化剂340倍,保留了其初始活性的60%。这种生物催化剂在单批次中产生256毫升UDP-葡萄糖,在五个反应循环后累积1米。因此,这种固定化酶可能是一种兴趣的生物催化剂,以合成UDP-葡萄糖。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号