...
首页> 外文期刊>Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications >Graphene 'bridge' in transferring hot electrons from plasmonic Ag nanocubes to TiO2 nanosheets for enhanced visible light photocatalytic hydrogen evolution
【24h】

Graphene 'bridge' in transferring hot electrons from plasmonic Ag nanocubes to TiO2 nanosheets for enhanced visible light photocatalytic hydrogen evolution

机译:石墨烯“桥梁”在从等离子体Ag纳米孔转移到热电子到TiO2纳米片中的增强可见光光催化氢气进化

获取原文
获取原文并翻译 | 示例

摘要

The integration of plasmonic metal with wide-bandgap semiconductor is a promising approach to utilize the visible light without compromise of the redox ability of photogenerated charge carriers. However, a larger work function of metal than that of semiconductor is indispensable to enable the injection of hot electrons from plasmonic metal to semiconductor. In this paper, we demonstrated that reduced graphene oxide (rGO) nanosheets as conductive "bridge" can breakthrough the restriction and transfer hot electrons from Ag of smaller work function to TiO2 of larger work function. In the design, both of the Ag nanocubes and TiO2 nanosheets are co-deposited on the surface of rGO nanosheets to form Ag-rGO-TiO2 structure, which was characterized by XRD, TEM, Raman and XPS spectra. On one hand, the Ag-rGO interface facilitates the transfer of hot electrons from Ag to rGO through conductor conductor contact. On the other hand, the new formed Schottky junction on the rGO-TiO2 interface further pumps the transferred electrons to the surface of TiO2 for photocatalytic reduction reaction resulted from the larger work function of rGO than that of TiO2. Enabled by this unique design, the hydrogen production activity achieved under visible light irradiation is dramatically enhanced in comparison with that of Ag-TiO2 counterpart with the direct contact between the same Ag nanocubes and TiO2 nanosheets. This work represents a step toward the rational interfacial design of plasmonic metal-semiconductor hybrid structures for broad-spectrum photocatalysis.
机译:具有宽带隙半导体的等离子体金属的整合是一种有希望的方法来利用可见光而不会损害光发化电荷载体的氧化还原能力。然而,比半导体的金属的更大功函数是必不可少的,以使得能够将来自等离子体金属的热电子注入半导体。在本文中,我们证明了作为导电“桥”的石墨烯(RGO)纳米片减少可以从较小的功函数的AG到较大的功函数的TiO 2突破。在设计中,两种Ag纳米孔和TiO2纳米片在Rgo纳米片的表面上共存,形成Ag-Rgo-TiO2结构,其特征在于XRD,TEM,拉曼和XPS光谱。一方面,AG-RGO接口通过导体导体接触促进从AG到RGO的热电子传递。另一方面,RGO-TiO2界面上的新型形成的肖特基结合进一步将转移的电子进一步向TiO 2的表面泵出光催化还原反应,从RGO的较大功函数比TiO 2的工作效果产生。通过这种独特的设计使得在可见光照射下实现的氢气产生活性与Ag-TiO2对应于具有直接接触的Ag-TiO2和TiO2纳米晶片的直接接触的显着增强。该工作代表了朝向广谱光催化分解的等离子体金属半导体混合结构的合理界面设计的一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号