...
首页> 外文期刊>Analytical chemistry >Illustrating the Mass-Transport Effect on Enzyme Cascade Reaction Kinetics by Use of a Rotating Ring–Disk Electrode
【24h】

Illustrating the Mass-Transport Effect on Enzyme Cascade Reaction Kinetics by Use of a Rotating Ring–Disk Electrode

机译:通过使用旋转环形盘电极说明对酶级联反应动力学的质量传输影响

获取原文
获取原文并翻译 | 示例
           

摘要

src="http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/ancham/2017/ancham.2017.89.issue-23/acs.analchem.7b03780/20171129/images/medium/ac-2017-03780e_0005.gif">Electrochemical biosensors based on enzymatic reaction have been applied to a wide range of fields. As the trend continues to grow, these biosensors are approaching the limit imposed by physics and chemistry. To further improve the performance of biosensors, the interplay of mass transport and enzymatic reaction kinetics, especially in enzyme cascade systems, should be considered in the design of biosensors. Herein, we propose a simple approach to studying the influence of mass transport and enzyme molecule motion on the kinetics of enzyme cascade reactions. β-Galactosidase (β-Gal) and glucose oxidase (GOx) of the enzyme cascade reaction are precisely immobilized onto the disk and ring electrodes, respectively, of a rotating ring–disk electrode (RRDE) via covalent attachment. At a low rotating speed (<600 rpm), convective transport promotes the enzyme cascade reaction. When the rotating speed is higher than 600 rpm, the cascade reaction becomes kinetically controlled. Further increase of the rotating speed results in a slow decline in reaction rate, possibly due to the production inhibition effect. In addition, the effect of conformation change of the enzyme at higher centrifugal forces on enzyme activity should be considered. This study would shine light on the effect of convective force on regulation of kinetics of enzyme cascade reaction, offering an ideal platform for studying other enzyme cascade reactions and providing fundamentals to design high-performance biosensors, biofuel cells, and bioelectronics.
机译:src =“http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/ancham/2017/acham.2017.89.issue-23/acs.analchem.7b03780/20171129/images/medium / CAC-2017-03780E_0005.GIF“”“”“”基于酶反应的电化学生物传感器已应用于各种田地。随着趋势持续增长,这些生物传感器正在接近物理和化学施加的限制。为了进一步改善生物传感器的性能,应考虑在生物传感器的设计中考虑大规模转运和酶联动力学的相互作用,特别是在酶级联系统中。在此,我们提出了一种简单的方法来研究大规模运输和酶分子运动对酶级联反应动力学的影响。酶级联反应的β-半乳糖苷酶(β-GAL)和葡萄糖氧化酶(GOX)经由共价连接将旋转环形盘电极(RRDE)精确地固定在盘和环形电极上。在低旋转速度(<600rpm)时,对流传输促进酶级联反应。当旋转速度高于600rpm时,级联反应变得动力学控制。旋转速度的进一步增加导致反应速率缓慢下降,可能是由于产生抑制效果。此外,应考虑酶在较高离心力下对酶活性的酶变化变化的影响。本研究将亮起对对混乱力对酶级联反应动力学调节的影响,为研究其他酶级联反应的理想平台,提供设计高性能生物传感器,生物燃料细胞和生物电联的基础。

著录项

  • 来源
    《Analytical chemistry》 |2017年第23期|共6页
  • 作者单位

    State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China;

    State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China;

    State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China;

    State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China;

    State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分析化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号