首页> 外文期刊>Analytical chemistry >Uncovering the Contribution of Microchannel Deformation to Impedance-Based Flow Rate Measurements
【24h】

Uncovering the Contribution of Microchannel Deformation to Impedance-Based Flow Rate Measurements

机译:揭示微通道变形对基于阻抗的流速测量的贡献

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

src="http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/ancham/2017/ancham.2017.89.issue-21/acs.analchem.7b02287/20171101/images/medium/ac-2017-02287k_0008.gif">Changes in electrical impedance have previously been used to measure fluid flow rate in microfluidic channels. Ionic redistribution within the electrical double layer by fluid flow has been considered to be the primary mechanism underlying such impedance based microflow sensors. Here we describe a previously unappreciated contribution of microchannel deformation to such measurements. We found that flow-induced microchannel deformation contributes significantly to the change in electrical impedance of solutions, in particular to those solutions producing an electrical double layer in the order of a few tens of nanometers (i.e., containing relatively high ionic strength). Since the flow velocity at the measurement surface is near zero, due to the laminar nature of the flow, the contribution of the double layer under the conditions mentioned above should be negligible. In contrast, an increase in the fluid flow rate results in an increase in the microchannel cross-sectional area (because of higher local pressure), therefore, producing a decrease in solution resistance between the two electrodes. Our results suggest that microflow sensors based on the concept of elastic deformation could be designed for in situ monitoring and fine control of fluid flow in flexible microfluidics. Finally, we show that purposefully engineering a larger deformability of the microchannel, by changing the geometry and the Young’s modulus of the microchannel, enhances the sensitivity of this flow rate measurement.
机译:src =“http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/ancham/2017/acham.2017.89.issue-21/acs.analchem.7b02287/20171101/images/medium / CAC-2017-02287K_0008.gif“ECTION”的电阻抗以前用于测量微流体通道中的流体流速。通过流体流动在电双层内的离子再分配被认为是基于这种阻抗的微射线传感器的主要机制。在这里,我们描述了以前未被解冻的微通道变形对此类测量的贡献。我们发现流动诱导的微通道变形显着贡献了溶液的电阻抗的变化,特别是溶液的电阻抗的变化,尤其至于以几十纳米(即含有相对高离子强度)的电气双层的那些溶液。由于测量表面的流速接近零,因此由于流动的层状性质,因此在上述条件下的双层的贡献应该是可忽略的。相反,流体流速的增加导致微通道横截面积增加(由于局部压力较高),因此在两个电极之间产生溶液电阻的降低。我们的研究结果表明,基于弹性变形概念的微射线传感器可以设计用于柔性微流体中的流体流动的原位监测和精细控制。最后,我们表明,通过改变微通道的几何形状和杨氏模量来提高微通道的微通道的更大可变形性,增强了该流速测量的灵敏度。

著录项

  • 来源
    《Analytical chemistry》 |2017年第21期|共6页
  • 作者单位

    Engineering Physics Division Physical Measurement Laboratory National Institute of Standards and Technology Gaithersburg Maryland 20899 United States;

    Engineering Physics Division Physical Measurement Laboratory National Institute of Standards and Technology Gaithersburg Maryland 20899 United States;

    Engineering Physics Division Physical Measurement Laboratory National Institute of Standards and Technology Gaithersburg Maryland 20899 United States;

    Engineering Physics Division Physical Measurement Laboratory National Institute of Standards and Technology Gaithersburg Maryland 20899 United States;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分析化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号