...
首页> 外文期刊>Analytical chemistry >Continuous Sorting of Cells Based on Differential P Selectin Glycoprotein Ligand Expression Using Molecular Adhesion
【24h】

Continuous Sorting of Cells Based on Differential P Selectin Glycoprotein Ligand Expression Using Molecular Adhesion

机译:使用分子粘附的基于差分P选择蛋白糖蛋白配体表达的细胞连续分选

获取原文
获取原文并翻译 | 示例
           

摘要

src="http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/ancham/2017/ancham.2017.89.issue-21/acs.analchem.7b02878/20171101/images/medium/ac-2017-02878t_0008.gif">Cell surface molecular adhesions govern many important physiological processes and are used to identify cells for analysis and purifications. But most effective cell adhesion separation technologies use labels or long-term attachments in their application. While label-free separation microsystems typically separate cells by size, stiffness, and shape, they often do not provide sufficient specificity to cell type that can be obtained from molecular expression. We demonstrate a label-free microfluidic approach capable of high throughput separation of cells based upon surface molecule adhesion. Cells are flowed through a microchannel designed with angled ridges at the top of the channel and coated with adhesive ligands specific to target cell receptors. The ridges slightly compress passing cells such that adhesive contact can be made with sufficient surface area without unduly affecting cell trajectories because of cell stiffness. Thus, sorting is sensitive to cell adhesion but not to stiffness or cell size. The enforced interactions between the cells and the ridges ensure that a high flow rate can be used without lift forces quenching adhesion. As a proof of principle of the method, we separate both Jurkat and HL60 cell lines based on their differential expression of PSGL-1 ligand by using a ridged channel coated with P selectin. We demonstrate 26-fold and 3.8-fold enrichment of PSGL-1 positive and 4.4-fold and 3.2-fold enrichment of PSGL-1 negative Jurkat and HL60 cells, respectively. Increasing the number of outlets to five allows for greater resolution in PSGL-1 selection resulting in fractionation of a single cell type into subpopulations of cells with high, moderate, and low PSGL-1 expression. The cells can flow at a rate of up to 0.2 m/s, which corresponds to 0.045 million cells per minute at the designed geometry, which is over 2 orders of magnitude higher than previous adhesive-based sorting approaches. Because of the short interaction time of the cells with the adhesive surfaces, the sorting method does not further activate the cells due to molecular binding. Such an approach may find use in label-free selection of cells for a highly expressed molecular phenotype.
机译:src =“http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/ancham/2017/acham.2017.89.issue-21/acs.analchem.7b02878/20171101/images/medium /℃-2017-02878T_0008.gif"Cel表面分子粘连控制许多重要的生理过程,用于鉴定细胞进行分析和纯化。但大多数有效的细胞粘附分离技术在其应用中使用标签或长期附件。虽然无标记的分离微系统通常通过尺寸,刚度和形状分离细胞,但它们通常不会为可以从分子表达获得的细胞类型提供足够的特异性。我们展示了一种无标记的微流体方法,其能够基于表面分子粘附基于细胞的高通量分离。细胞通过在通道顶部的倾斜脊设计的微通道流过,并涂覆有特异于靶细胞受体的粘合配体。脊稍微压缩通过细胞,使得可以用足够的表面积来制造粘合剂接触,而不会由于细胞刚度而过度影响细胞轨迹。因此,分选对细胞粘附性敏感,但不是刚度或细胞尺寸。电池和脊之间的强制相互作用确保可以使用高流速而无需升力淬火粘附。作为该方法原理的证据,我们通过使用涂覆有P选择素的脊通道来分离Jurkat和HL60细胞系的差异表达。我们分别示出了26倍和3.8倍的PSGL-1阳性和4.4倍和3.2倍富集PSGL-1负jurkat和HL60细胞的富集。将出口数量增加到五个允许在PSG1-1选择中进行更大的分辨率,导致单细胞类型分馏到具有高,中等和低PSGL-1表达的细胞群中。该细胞可以以高达0.2M / s的速率流动,其在设计的几何形状中对应于每分钟0.045亿个细胞,其比以前的基于粘合剂的分类方法高出2个数量级。由于细胞与粘合表面的短相互作用时间,分选方法由于分子结合而不进一步激活细胞。这种方法可以在没有表达的分子表型中可在无标记的细胞选择中使用。

著录项

  • 来源
    《Analytical chemistry》 |2017年第21期|共7页
  • 作者单位

    The School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta Georgia 30332 United States;

    Department of Chemical and Biomolecular Engineering Georgia Institute of Technology Atlanta Georgia 30332 United States;

    Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta Georgia 30332 United States;

    Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta Georgia 30332 United States;

    The School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta Georgia 30332 United States;

    Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta Georgia 30332 United States;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分析化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号