首页> 外文期刊>Analytical chemistry >Scanning Electrochemical Cell Microscopy (SECCM) Chronopotentiometry: Development and Applications in Electroanalysis and Electrocatalysis
【24h】

Scanning Electrochemical Cell Microscopy (SECCM) Chronopotentiometry: Development and Applications in Electroanalysis and Electrocatalysis

机译:扫描电化学细胞显微镜(SECCM)计时透明度:电分析和电常见的开发和应用

获取原文
获取原文并翻译 | 示例
       

摘要

Scanning electrochemical cell microscopy (SECCM) has been applied for nanoscale (electro)activity mapping in a range of electrochemical systems but so far has almost exclusively been performed in controlled-potential (amperometric/voltammetric) modes. Herein, we consider the use of SECCM operated in a controlled-current (galvanostatic or chronopotentiometric) mode, to synchronously obtain spatially resolved electrode potential (i.e., electrochemical activity) and topographical "maps". This technique is first applied, as proof of concept, to study the electrochemically reversible [Ru-(NH3)(6)](3+/2+)electron transfer process at a glassy carbon electrode surface, where the experimental data are in good agreement with well-established chronopotentiometric theory under quasi-radial diffusion conditions. The [Ru(NH3)(6)](3+/2+) process has also been imaged at "aged" highly ordered pyrolytic graphite (HOPG), where apparently enhanced electrochemical activity is measured at the edge plane relative to the basal plane surface, consistent with potentiostatic measurements. Finally, chronopotentiometric SECCM has been employed to benchmark a promising electrocatalytic system, the hydrogen evolution reaction (HER) at molybdenum disulfide (MoS2), where higher electrocatalytic activity (i.e., lower overpotential at a current density of 2 mA cm(-2)) is observed at the edge plane compared to the basal plane surface. These results are in excellent agreement with previous controlled-potential SECCM studies, confirming the viability of the technique and thereby opening up new possibilities for the use of chronopotentiometric methods for quantitative electroanalysis at the nanoscale, with promising applications in energy storage (battery) studies, electrocatalyst benchmarking, and corrosion research.
机译:扫描电化学电池显微镜(SECCM)已施加用于一系列电化学系统中的纳米级(电)活性映射,但到目前为止已经在控制电位(Amperometric /伏安)模式中进行。在此,我们考虑使用在受控电流(Galvanostatic或计时计)模式下操作的SECCM,同步地获得空间分辨的电极电位(即,电化学活动)和地形“地图”。首先应用该技术,作为概念证明,研究在玻璃碳电极表面处的电化学可逆[Ru-(NH3)(6)](3 + / 2 +)电子转移过程,实验数据良好在准径向扩散条件下与成熟的计时尺寸理论达成协议。 [Ru(NH3)(6)](3 + / 2 +)方法也在“老化”高度有序的热解石墨(HOPG)上成像,其中在相对于基底平面上在边缘平面上测量显而易变地增强的电化学活性表面,与电位测量一致。最后,计时透明度Seccm已用于基准测试的电催化系统,在二硫化钼(MOS2)下的氢进化反应(她),其中较高的电催化活性(即,下电流为2 mA cm(-2)的低调(-2))与基平面表面相比,在边缘平面处观察到。这些结果与先前受控潜在的SECCM研究有着良好的一致性,确认了该技术的可行性,从而开辟了在纳米级上使用时间计量电催化的速度算法的新可能性,具有在储能(电池)研究中有前途的应用,电催化剂基准测试和腐蚀研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号