首页> 外文期刊>Analytical chemistry >Digital Processing for Single Nanoparticle Electrochemical Transient Measurements
【24h】

Digital Processing for Single Nanoparticle Electrochemical Transient Measurements

机译:单纳米粒子电化学瞬态测量的数字处理

获取原文
获取原文并翻译 | 示例
       

摘要

We demonstrate the use of digital frequency analysis in single nanoparticle electrochemical detection. The method uses fast Fourier transforms (FFT) of single entity electrochemical transients and digital filters. These filters effectively remove noise with the Butterworth filter preserving the amplitude of the fundamental processes in comparison with the rectangle filter. Filtering was done in three different types of experiments: single nanoparticle electrocatalytic amplification, photocatalytic amplification, and nanoimpacts of single entities. In the individual nanoparticle stepwise transients, low-pass filters maintain the step height. Furthermore, a Butterworth band-stop filter preserves the peak height in blip transients if the band-stop cutoff frequencies are compatible with the nanoparticle/electrode transient interactions. In hydrazine oxidation by single Au nanoparticles, digital filtering does not complicate the analysis of the step signal because the stepwise change of the particle-by-particle current is preserved with the rectangle, Bessel and Butterworth low pass filters, with the later minimizing time shifts. In the photocurrent single entity transients, we demonstrate resolving a step smaller than the noise. In photoelectrochemical setups, the background processes are stochastic and appear at distinct frequencies that do not necessarily correlate with the detection frequency (f(p)), of TiO2 nanoparticles. This lack of correlation indicates that background signals have their characteristic frequencies and that it is advantageous to perform filtering a posteriori. We also discuss selecting the filtering frequencies based on sampling rates and f(p). In experiments electrolyzing ZnO, that model nanoimpacts, a band-stop filter can remove environmental noise within the sampling spectral region while preserving relevant information on the current transient. We discuss the limits of Bessel and Butterworth filters for resolving consecutive transients.
机译:我们证明了在单一纳米粒子电化学检测中使用数字频率分析。该方法使用单个实体电化学瞬变和数字滤波器的快速傅里叶变换(FFT)。这些过滤器有效地消除了与矩形滤波器相比保持基本过程幅度的Butterworth滤波器的噪声。过滤在三种不同类型的实验中进行:单一纳米粒子电催化扩增,光催化扩增和单一实体的纳米切换。在单个纳米颗粒逐步瞬变中,低通滤波器保持阶梯高度。此外,如果带式停止截止频率与纳米颗粒/电极瞬态相互作用兼容,则Butterworth带式停止过滤器在孔瞬变中保持峰值高度。在单个Au纳米颗粒的肼氧化中,数字滤波不会使步进信号的分析复杂化,因为逐颗粒电流的逐步变化用矩形,贝塞尔和黄油低通滤波器保留,随后最小化时间偏移。在光电流单个实体瞬变中,我们演示了分辨率小于噪声的步骤。在光电化学设置中,背景过程是随机性的,并且出现在TiO2纳米颗粒的检测频率(F(P))不一定相关的明显频率。这种缺乏相关性表明背景信号具有它们的特征频率,并且有利于执行滤波后验。我们还根据采样率和F(P)讨论选择过滤频率。在实验中,电解ZnO,该模型纳米仪,带停止滤波器可以在采样光谱区域内去除环境噪声,同时保留关于电流瞬态的相关信息。我们讨论了用于解决连续瞬变的贝塞尔和Butterworth滤波器的限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号