...
首页> 外文期刊>Analytical chemistry >Optimum Sample Thickness for Trace Analyte Detection with Field-Resolved Infrared Spectroscopy
【24h】

Optimum Sample Thickness for Trace Analyte Detection with Field-Resolved Infrared Spectroscopy

机译:具有现场分辨红外光谱的痕量分析物检测的最佳样品厚度

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The strong absorption of liquid water in the infrared (IR) molecular fingerprint region constitutes a challenge for applications of vibrational spectroscopy in chemistry, biology, and medicine. While high-power IR laser sources enable the penetration of ever thicker aqueous samples, thereby mitigating the detrimental effects of strong attenuation on detection sensitivity, a basic advantage of heterodyne-measurement-based methods has-to the best of our knowledge-not been harnessed in broadband IR measurements to date. Here, employing field-resolved spectroscopy (FRS), we demonstrate in theory and experiment fundamental advantages of techniques whose signal-to-noise ratio (SNR) scales linearly with the electric field over those whose SNR scales linearly with radiation intensity, including conventional Fourier-transform infrared (FTIR) and direct absorption spectroscopy. Field-scaling brings about two major improvements. First, it squares the measurement dynamic range. Second, we show that the optimum interaction length with samples for SNR-maximized measurements is twice the value usually considered to be optimum for FTIR devices. In order to take full advantage of these properties, the measurement must not be significantly affected by technical noise, such as intensity fluctuations, which are common for high-power sources. Recently, it has been shown that subcycle, nonlinear gating of the molecular fingerprint signal renders FRS robust against intensity noise. Here, we quantitatively demonstrate this advantage of FRS for thick aqueous samples. We report sub-mu g/mL detection sensitivities for transmission path lengths up to 80 mu m and a limit of detection in the lower mu g/mL range for transmission paths as long as 200 mu m.
机译:红外(IR)分子指纹区域中液体水的强烈吸收构成振动光谱在化学,生物学和医学中的应用的挑战。虽然高功率IR激光源使得能够较厚的水性样品渗透,从而减轻了强度衰减对检测灵敏度的不利影响,其基于外差的测量方法的基本优势与我们所知的基本优势 - 未被利用在宽带红外线测量到日期。在这里,采用现场解析的光谱学(FRS),我们证明了理论上和实验的技术的基本优势,其信噪比(SNR)与电场线性缩放的技术,在那些与辐射强度线性线性的SNR刻度,包括常规傅立叶 - 转化红外(FTIR)和直接吸收光谱。现场缩放带来了两个主要改进。首先,它使测量动态范围平方。其次,我们表明,具有用于SNR最大测量的样本的最佳交互长度是通常被认为是FTIR器件最佳的值的两倍。为了充分利用这些性质,测量不得显着受到技术噪声的显着影响,例如强度波动,这对于高功率源很常见。最近,已经表明,分子指纹信号的亚唾液,非线性门控呈FRS对强度噪声的稳健。在这里,我们定量表现出FRS用于厚含水样品的这种优点。我们向传输路径报告的亚mu g / ml检测灵敏度长达80μm,并且在透射路径的下部mu g / ml范围内的检测限为200μm。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号