首页> 外文期刊>American Journal of Physiology >Development of an anatomically detailed MRI-derived rabbit ventricular model and assessment of its impact on simulations of electrophysiological function.
【24h】

Development of an anatomically detailed MRI-derived rabbit ventricular model and assessment of its impact on simulations of electrophysiological function.

机译:致剖析详细的MRI衍生的兔心室模型的发展和对电生理功能模拟的影响。

获取原文
获取原文并翻译 | 示例
           

摘要

Recent advances in magnetic resonance (MR) imaging technology have unveiled a wealth of information regarding cardiac histoanatomical complexity. However, methods to faithfully translate this level of fine-scale structural detail into computational whole ventricular models are still in their infancy, and, thus, the relevance of this additional complexity for simulations of cardiac function has yet to be elucidated. Here, we describe the development of a highly detailed finite-element computational model (resolution: approximately 125 microm) of rabbit ventricles constructed from high-resolution MR data (raw data resolution: 43 x 43 x 36 microm), including the processes of segmentation (using a combination of level-set approaches), identification of relevant anatomical features, mesh generation, and myocyte orientation representation (using a rule-based approach). Full access is provided to the completed model and MR data. Simulation results were compared with those from a simplified model built from the same images but excluding finer anatomical features (vessels/endocardial structures). Initial simulations showed that the presence of trabeculations can provide shortcut paths for excitation, causing regional differences in activation after pacing between models. Endocardial structures gave rise to small-scale virtual electrodes upon the application of external field stimulation, which appeared to protect parts of the endocardium in the complex model from strong polarizations, whereas intramural virtual electrodes caused by blood vessels and extracellular cleft spaces appeared to reduce polarization of the epicardium. Postshock, these differences resulted in the genesis of new excitation wavefronts that were not observed in more simplified models. Furthermore, global differences in the stimulus recovery rates of apex/base regions were observed, causing differences in the ensuing arrhythmogenic episodes. In conclusion, structurally simplified models are well suited for a large range of cardiac modeling applications. However, important differences are seen when behavior at microscales is relevant, particularly when examining the effects of external electrical stimulation on tissue electrophysiology and arrhythmia induction. This highlights the utility of histoanatomically detailed models for investigations of cardiac function, in particular for future patient-specific modeling.
机译:磁共振(MR)成像技术的最新进展推出了有关心脏缔约肌复杂性的丰富信息。然而,忠实地将该水平的细尺结构细节忠实地转化为计算的整个心室模型的方法仍然在其初期,因此,这种额外复杂性对心脏功能模拟的相关性尚未得到阐明。在这里,我们描述了从高分辨率MR数据(原始数据分辨率:43 x 43 x 36 microm)构成的高度详细有限元计算模型(分辨率:大约125微米)的兔心室,包括分割过程(使用水平集方法的组合),识别相关解剖学特征,网格生成和肌细胞取向表示(使用基于规则的方法)。完全访问被提供给已完成的模型和MR数据。将模拟结果与来自相同图像构建的简化模型的仿真结果进行了比较,但不包括更细的解剖功能(血管/内心膜膜结构)。初始模拟表明,Trabeculations的存在可以为激发提供捷径路径,导致模型之间起搏后的激活中的区域差异。在应用外部场刺激时,心内膜结构产生小规模的虚拟电极,这似乎在从强偏振中保护了内膜内的内膜内容,而由血管和细胞外裂隙空间引起的intramural virthryody似乎减少了极化表皮。邮袋,这些差异导致在更简化的模型中未观察到的新激发波前的成因。此外,观察到顶点/基区刺激回收率的全局差异,导致随后的心律失常发作中的差异。总之,结构简化的模型非常适用于大量的心脏建模应用。然而,当微观物体的行为相关时,特别是当检查外部电刺激对组织电生理学和心律失常诱导的影响时,可以看到重要的差异。这突出了组织统计学上详细模型的实用性,用于对心功能的研究,特别是对于未来的患者特异性建模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号