...
首页> 外文期刊>ACS applied materials & interfaces >Inorganic Ligand Thiosulfate-Capped Quantum Dots for Efficient Quantum Dot Sensitized Solar Cells
【24h】

Inorganic Ligand Thiosulfate-Capped Quantum Dots for Efficient Quantum Dot Sensitized Solar Cells

机译:无机配体硫代硫酸盐封端的量子点,用于高效量子点敏化太阳能电池

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The insulating nature of organic ligands containing long hydrocarbon tails brings forward serious limitations for presynthesized quantum dots (QDs) in photovoltaic applications. Replacing the initial organic hydrocarbon chain ligands with simple, cheap, and small inorganic ligands is regarded as an efficient strategy for improving the performance of the resulting photovoltaic devices. Herein, thiosulfate (S2O32-) and sulfide (S2-) were employed as ligand-exchange reagents to get access to the inorganic ligand S2O32-and S-2-capped CdSe QDs. The obtained inorganic ligand-capped QDs, together with the initial oleylamine-capped QDs, were used as light-absorbing materials in the construction of quantum dot sensitized solar cells (QDSCs). Photovoltaic results indicate that thiosulfate-capped QDs give excellent power conversion efficiency (PCE) of 6.11% under the illumination of full one sun; which is remarkably higher than those of sulfide-(3.36%) and OAm-capped QDs (0.84%) and is comparable to the state-of:the-art,:value based on mercaptocatboxylit acid capped QDs. Photoluminescence (PL) decay characterization demonstrates that thiosulfate-based QDSCs have a much-faster electron injection rate from,QD to TiO2 substrate in comparison with those of sulfide-and OAm-based QDSCs. Electrochemical impedance spectroscopy (EIS) results indicate that higher charge-recombination resistance between potoanode and eletrolyte interfaces were observed in the thiosulfate-based cells. To the best of our knowledge, this is the first application of thiosulfate-Capped QDs in the fabrication of efficient QDSCs. This will lend a new perspective to boosting the performance of QDSCs furthermore.
机译:含有长碳氢化合物尾部的有机配体的绝缘性质为光伏应用中的未加工量子点(QDS)带来了严重限制。用简单,便宜和小无机配体替换初始有机烃链配体被认为是改善所得光伏器件性能的有效策略。本文中,使用硫代硫酸盐(S2O32-)和硫化物(S2-)作为配体 - 交换试剂,得到无机配体S2O32-and S-2封端的CDSE QDS。将所得无机配体封端的QD与初始Ouleylamine封端的QD一起用作量子点敏化太阳能电池(QDSC)的施工中的光吸收材料。光伏结果表明,硫代硫酸盐盖QDS在全阳光照明下提供6.11%的优异功率转换效率(PCE);这显着高于硫化物 - (3.36%)和OAM封端的QDS(0.84%),并且与最新的QD(0.84%),:基于巯基丙二酸酸的值升压QD。光致发光(PL)衰减表征证明,与硫化物和奥姆基QDSC的QD至TiO2基板相比,基于硫代硫酸盐的QDSC具有QD至TiO2基板的更快的电子注入速率。电化学阻抗光谱(EIS)结果表明,在硫代硫酸盐基细胞中观察到聚偶氮和EletroMate界面之间的较高电荷重组抗性。据我们所知,这是第一次在高效QDSC制造中进行硫代硫酸盐盖QDS的应用。这将借助QDSC的性能来借助新的视角。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号