首页> 外文期刊>ACS applied materials & interfaces >NASICON-Type Mg0.5Ti2(PO4)(3) Negative Electrode Material Exhibits Different Electrochemical Energy Storage Mechanisms in Na-Ion and Li-Ion Batteries
【24h】

NASICON-Type Mg0.5Ti2(PO4)(3) Negative Electrode Material Exhibits Different Electrochemical Energy Storage Mechanisms in Na-Ion and Li-Ion Batteries

机译:NASICON型MG0.5TI2(PO4)(3)负极材料在NA离子和锂离子电池中表现出不同的电化学储能机制

获取原文
获取原文并翻译 | 示例
           

摘要

A carbon-coated Mg0.5Ti2(PO4)(3) polyanion material was prepared by the sol-gel method and then studied as the negative electrode materials for lithium-ion and sodium-ion batteries. The material showed a specific capacity of 268.6 mAh g(-1) in the voltage window of 0.01-3.0 V vs Na+/Na-0. Due to the fast diffusion of Na+ in the NASICON framework, the material exhibited superior rate capability with a specific capacity of 94.4 mAh g(-1) at a current density of 5A g(-1). Additionally, 99.1% capacity retention was achieved after 300 cycles, demonstrating excellent cycle stability. By comparison, Mg0.3Ti2(PO4)(3) delivered 629.2 mAh g(-1) in 0.01-3.0 V vs Li+/Li-0, much higher than that of the sodium-ion cells. During the first discharge, the material decomposed to Ti/Mg nanoparticles, which were encapsulated in an amorphous SEI and Li3PO4 matrix. Li+ ions were stored in the Li3PO4 matrix and the SEI film formed/decomposed in subsequent cycles, contributing to the large Li+ capacity of Mg0.5Ti2(PO4)(3). However, the lithium-ion cells exhibited inferior rate capability and cycle stability compared to the sodium-ion cells due to the sluggish electrochemical kinetics of the electrode.
机译:通过溶胶 - 凝胶法制体制备碳涂覆的Mg0.5Ti2(PO4)(3)多膜原料,然后作为锂离子和钠离子电池的负电极材料进行研究。该材料在电压窗口中显示出268.6mAhg(-1)的特定容量为0.01-3.0V Vs Na + / Na-0。由于NASIC框架中Na +的快速扩散,该材料在电流密度为5ag(-1)的情况下,具有94.4mahg(-1)的特定容量的优异速率能力。此外,在300次循环后,达到了99.1%的容量保持,展示了优异的循环稳定性。相比之下,Mg0.3Ti2(PO4)(3)在0.01-3.0V Vs Li + / Li-0中递送629.2mAhg(-1),远高于钠离子细胞的钠。在第一次放电期间,将其分解为Ti / Mg纳米颗粒,其包封在无定形Sei和Li3PO4基质中。 Li +离子储存在Li3PO4基质中,并在随后的循环中形成/分解的SEI膜,有助于Mg0.5Ti2(PO4)(3)的大Li +容量。然而,与电极的缓慢电化学动力学相比,锂离子电池与钠离子电池相比表现出低劣的速率能力和循环稳定性。

著录项

  • 来源
    《ACS applied materials & interfaces》 |2017年第5期|共10页
  • 作者单位

    Jilin Univ Coll Phys Minist Educ Key Lab Phys &

    Technol Adv Batteries Changchun 130012 Peoples R China;

    Jilin Univ Coll Phys Minist Educ Key Lab Phys &

    Technol Adv Batteries Changchun 130012 Peoples R China;

    Jilin Univ Coll Phys Minist Educ Key Lab Phys &

    Technol Adv Batteries Changchun 130012 Peoples R China;

    Jilin Univ Coll Phys Minist Educ Key Lab Phys &

    Technol Adv Batteries Changchun 130012 Peoples R China;

    Northeast Dianli Univ Coll Sci Jilin 132012 Jilin Peoples R China;

    Karlsruhe Inst Technol Inst Appl Mat D-76344 Eggenstein Leopoldshafen Germany;

    Jilin Univ Coll Phys Minist Educ Key Lab Phys &

    Technol Adv Batteries Changchun 130012 Peoples R China;

    Karlsruhe Inst Technol Inst Appl Mat D-76344 Eggenstein Leopoldshafen Germany;

    Karlsruhe Inst Technol Inst Appl Mat D-76344 Eggenstein Leopoldshafen Germany;

    Jilin Univ State Key Lab Superhard Mat Changchun 130012 Peoples R China;

    Jilin Univ Coll Phys Minist Educ Key Lab Phys &

    Technol Adv Batteries Changchun 130012 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学工业;
  • 关键词

    lithium ion battery; sodium ion battery; anode material; magnesium titanium phosphate; electrochemical properties;

    机译:锂离子电池;钠离子电池;阳极材料;磷酸镁;电化学性质;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号