首页> 外文期刊>ACS applied materials & interfaces >Graphene-Bridged Multifunctional Flexible Fiber Supercapacitor with High Energy Density
【24h】

Graphene-Bridged Multifunctional Flexible Fiber Supercapacitor with High Energy Density

机译:石墨烯 - 桥接多功能柔性纤维超级电容器,具有高能量密度

获取原文
获取原文并翻译 | 示例
       

摘要

Portable fiber supercapacitors with high-energy storage capacity are in great demand to cater for the rapid development of flexible and deformable electronic devices. Hence, we employed a 3D cellular copper foam (CF) combined with the graphene sheets (GSs) as the support matrix to bridge the active material with nickel fiber (NF) current collector, significantly increasing surface area and decreasing the interface resistance. In comparison to the active material directly growing onto the NF in the absence of CF and GSs, our rationally designed architecture achieved a joint improvement in both capacity (0.217 mAh cm(-2)/1729.413 mF cm(-2), 1200% enhancement) and rate capability (87.1% from 1 to 20 mA cm(-2), 286% improvement), which has never been achieved before with other fiber supercapacitors. The in situ scanning electron microscope (SEM) microcompression test demonstrated its superior mechanical recoverability for the first time. Importantly, the assembled flexible and wearable device presented a superior energy density of 109.6 mu Wh cm(-2) at a power density of 749.5 mu W cm(-2), and the device successfully coupled with a flexible strain sensor, solar cell, and nanogenerator. This rational design should shed light on the manufacturing of 3D cellular architectures as microcurrent collectors to realize high energy density for fiber-based energy storage devices.
机译:具有高储能容量的便携式纤维超级电容器需求促使灵活可变形电子设备的快速发展。因此,我们使用与石墨烯片(GSS)组合的3D细胞铜泡沫(CF)作为支撑基质,以将活性材料与镍纤维(NF)集电器桥接,显着增加表面积并降低界面电阻。与在没有CF和GSS的没有直接生长到NF上的活性材料相比,我们合理设计的架构在任何容量(0.217mAhcm(-2)/1729.413mf cm(-2),1200%增强中都达到了关节改善)和速率能力(从1至20 mA cm(-2),286%的改善),286%的改善),从未如此含有其他纤维超级电容器。原位扫描电子显微镜(SEM)微块测试首次展示了其优越的机械可回收性。重要的是,组装的柔性且可穿戴装置在749.5μm(-2)的功率密度为109.6μm(-2)的卓越能量密度,并且该器件与柔性应变传感器,太阳能电池成功耦合,和纳米液。这种合理设计应阐明3D蜂窝架构的制造作为微电流收集器,以实现基于光纤的能量存储装置的高能量密度。

著录项

  • 来源
    《ACS applied materials & interfaces》 |2018年第34期|共11页
  • 作者单位

    City Univ Hong Kong Dept Mech Engn Kowloon 999077 Hong Kong Peoples R China;

    Hong Kong Polytech Univ Inst Text &

    Clothing Nanotechnol Ctr Funct &

    Intelligent Text &

    Appare Kowloon 999077 Hong Kong Peoples R China;

    City Univ Hong Kong Dept Mech Engn Kowloon 999077 Hong Kong Peoples R China;

    City Univ Hong Kong Dept Mech Engn Kowloon 999077 Hong Kong Peoples R China;

    City Univ Hong Kong Dept Mech Engn Kowloon 999077 Hong Kong Peoples R China;

    City Univ Hong Kong Dept Mech Engn Kowloon 999077 Hong Kong Peoples R China;

    Hong Kong Polytech Univ Inst Text &

    Clothing Nanotechnol Ctr Funct &

    Intelligent Text &

    Appare Kowloon 999077 Hong Kong Peoples R China;

    City Univ Hong Kong Dept Mech Engn Kowloon 999077 Hong Kong Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学工业;
  • 关键词

    LDH; fiber supercapacitor; mechanical recoverability; graphene; nano generator;

    机译:LDH;纤维超级电容器;机械可恢复性;石墨烯;纳米发电机;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号