首页> 外文期刊>ACS applied materials & interfaces >Bacterial Cellulose Promotes Long-Term Stemness of mESC
【24h】

Bacterial Cellulose Promotes Long-Term Stemness of mESC

机译:细菌纤维素促进MESC的长期茎

获取原文
获取原文并翻译 | 示例
       

摘要

Stem cells possess unique properties, such as the ability to self-renew and the potential to differentiate into an organism's various cell types. These make them highly valuable in regenerative medicine and tissue engineering. Their properties are precisely regulated in vivo through complex mechanisms that include multiple cues arising from the cell interaction with the surrounding extracellular matrix, neighboring cells, and soluble factors. Although much research effort has focused on developing systems and materials that mimic this complex microenvironment, the controlled regulation of differentiation and maintenance of stemness in vitro remains elusive. In this work, we demonstrate, for the first time, that the nanofibrous bacterial cellulose (BC) membrane derived from Komagataeibacter xylinus can inhibit the differentiation of mouse embryonic stem cells (mESC) under long-term conditions (17 days), improving their mouse embryonic fibroblast (MEF)-free cultivation in comparison to the MEF-supported conventional culture. The maintained cells' pluripotency was confirmed by the mESCs' ability to differentiate into the three germ layers (endo-, meso-, and ectoderm) after having been cultured on the BC membrane for 6 days. In addition, the culturing of mESCs on flexible, free-standing BC membranes enables the quick and facile manipulation and transfer of stem cells between culture dishes, both of which significantly facilitate the use of stem cells in routine culture and various applications. To investigate the influence of the structural and topographical properties of the cellulose on stem cell differentiation, we used the cellulose membranes differing in membrane thickness, porosity, and surface roughness. This work identifies bacterial cellulose as a novel convenient and flexible membrane material enabling long-term maintenance of mESCs' stemness and significantly facilitating the handling and culturing of stem cells.
机译:干细胞具有独特的性质,例如自我更新的能力,以及分化成有机体的各种细胞类型的潜力。这些使它们在再生医学和组织工程中具有非常有价值的。它们的性质在体内精确调节,通过复杂的机制,包括从与周围细胞外基质,相邻细胞和可溶性因子的细胞相互作用产生的多个提示。虽然有很多研究努力,专注于开发模仿这种复杂的微环境的系统和材料,但在体外的分化和维持性的对照调节仍然是难以捉摸的。在这项工作中,我们首次证明衍生自Komagataibust的纳米纤维细菌纤维素(BC)膜可以在长期条件下抑制小鼠胚胎干细胞(MESC)的分化(17天),改善他们的小鼠与MEF支持的常规培养相比,胚胎成纤维细胞(MEF) - 免培养。通过MESCS在在BC膜上培养6天后将其分化为三种胚层(内部,中,中间,中间,和外胚层)的能力来证实维持的细胞的多能性。此外,对柔性独立式BC膜的培养物能够快速和容易地操纵和转移培养皿之间的干细胞,这两者都显着促进了干细胞在常规培养中的使用和各种应用。为了研究纤维素对干细胞分化对纤维素的结构和地形性质的影响,我们使用膜厚度,孔隙率和表面粗糙度不同的纤维素膜。这项工作将细菌纤维素识别为一种新颖的和柔性膜材料,从而能够长期维持Mescs的茎,并显着促进干细胞的处理和培养。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号