...
首页> 外文期刊>ACS applied materials & interfaces >Engineering of High-Density Thin-Layer Graphite Foam-Based Composite Architectures with Superior Compressibility and Excellent Electromagnetic Interference Shielding Performance
【24h】

Engineering of High-Density Thin-Layer Graphite Foam-Based Composite Architectures with Superior Compressibility and Excellent Electromagnetic Interference Shielding Performance

机译:高密度薄层石墨泡沫复合架构的工程,具有卓越的压缩性和优异的电磁干扰屏蔽性能

获取原文
获取原文并翻译 | 示例
           

摘要

Three-dimensional (3D) graphene architectures with well-controlled structure and excellent physiochemical properties have attracted considerable interest due to their potential applications in flexible electronic devices. However, the majority of the existing 3D graphene still encounters several drawbacks such as brittleness, non-uniform building units, and limited scale (millimeter or even micrometer), which severely limits its practical applications. Herein, we demonstrate a new scalable technique for the preparation thin-layer graphite foam (GF) with controllable densities (27.2-69.2 mg cm(-3)) by carbonization of polyacrylonitrile using a template-directed thermal annealing approach. By integrating the GF with poly(dimethylsiloxane) (PDMS), macroscopic porous GF@PDMS with variable thin-layer GF contents ranging from 15.9 to 31.7% was further fabricated. Owing to the robust interconnected porous network of the GF and the synergistic effect between GF and PDMS, GF@PDMS with a 15.9% thin-layer GF content exhibited an impressive 254% increase in compressive strength over the bare GF. In addition, such 15.9% GF@PDMS can totally recover after the first compression cycle at a 95% strain and maintain similar to 88% recovery even after 1000 compression cycles at an 80% strain, demonstrating its superior compressibility. Moreover, all of the as-prepared GF@PDMS samples possessed high electrical conductivity (up to 34.3 S m(-1)), relatively low thermal conductivity (0.062-0.076 W m(-1) K-1), and excellent electromagnetic interference shielding effectiveness (up to 36.1 dB) over a broad frequency range of 8.2-18 GHz, indicating their great potential as promising candidates for high-performance electromagnetic wave absorption in flexible electronic devices.
机译:由于柔性电子设备的潜在应用,具有控制结构良好的结构和优异的物理化学特性的三维(3D)石墨烯架构引起了相当大的兴趣。然而,大多数现有的3D石墨烯仍然遇到诸如脆性,非均匀建筑单元和有限的尺度(毫米或甚至千分尺)的若干缺点,这严重限制了其实际应用。在此,我们通过使用模板定向的热退火方法,证明了一种新的用于制备薄层石墨泡沫(GF)的可控密度(27.2-69.2mg cm(-3))。通过将GF与聚(二甲基硅氧烷)(PDMS)与聚(PDMS)相容,进一步制造了具有可变薄层GF含量的宏观多孔GF @ PDMS,其范围为15.9至31.7%。由于GF的稳健互连多孔网络和GF和PDMS之间的协同效应,具有15.9%薄层GF含量的GF @ PDMS在裸GF上表现出令人印象深刻的254%的抗压强度。此外,这种15.9%GF @ PDMS可以在第一个压缩循环以95%菌株的菌株下完全恢复,并且即使在80%菌株的1000个压缩循环之后,也保持类似于88%的回收率,证明其优异的可压缩性。此外,所有的所有AS制备的GF @ PDMS样品都具有高导电性(高达34.3S m(-1)),相对低的导热率(0.062-0.076WM(-1)K-1)和优异的电磁在8.2-18GHz的广泛频率范围内(最多36.1dB)的干扰屏蔽效果(最多36.1dB),表明它们在灵活电子设备中高性能电磁波吸收的有希望的候选者的巨大潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号