首页> 外文期刊>ACS applied materials & interfaces >Predicting Wettability and the Electrochemical Window of Lithium-Metal/Solid Electrolyte Interfaces
【24h】

Predicting Wettability and the Electrochemical Window of Lithium-Metal/Solid Electrolyte Interfaces

机译:预测锂金属/固体电解质界面的润湿性和电化学窗

获取原文
获取原文并翻译 | 示例
           

摘要

The development of solid electrolytes (SEs) is expected to enhance the safety of lithium-ion batteries. Additionally, a viable SE could allow the use of a Li-metal negative electrode, which would increase energy density. Recently, several antiperovskites have been reported to exhibit high ionic conductivities, prompting investigations of their use as an SE. In addition to having a suitable conductivity, phenomena at the interface between an SE and an electrode are also of great importance in determining the viability of an SE. For example, interfacial interactions can change the positions of the band edges of the SE, altering its stability against undesirable oxidation or reduction. Furthermore, the wettability of the SE by the metallic anode is desired to enable low interfacial resistance and uniform metal plating and stripping during cycling. The present study probes several properties of the SE/electrode interface at the atomic scale. Adopting the antiperovskite SE Li_(3)OCl (LOC)/Li-metal anode interface as a model system, the interfacial energy, work of adhesion, wettability, band edge shifts, and the electrochemical window are predicted computationally. The oxygen-terminated interface was determined to be the most thermodynamically stable. Moreover, the large calculated work of adhesion for this system implies that Li will wet LOC, suggesting the possibility for low interfacial resistance. Nevertheless, these strong interfacial interactions come at a cost to electrochemical stability: strong interfacial bonding lowers the energy of the conduction band minimum (CBM) significantly and narrows the local band gap by 30% in the vicinity of the interface. Despite this interface-induced reduction in electrochemical window, the CBM in LOC remains more negative than the Li/Li~(+) redox potential, implying stability against reduction by the anode. In sum, this study illustrates a comprehensive computational approach to assessing electrode/electrolyte interfacial properties in solid-state batteries.
机译:预计固体电解质(SES)的开发将增强锂离子电池的安全性。另外,可行的SE可以允许使用Li-Malb负极,这将增加能量密度。最近,据报道,几个antiperovskites表现出高离子导电性,促使它们作为SE的用途的调查。除了具有合适的电导率之外,在确定SE的可行性方面也非常重要地是非常重要的。例如,界面相互作用可以改变SE的带状边缘的位置,改变其稳定性免受不希望的氧化或还原的。此外,希望通过金属阳极润湿性是在循环期间实现低界面抗性和均匀的金属镀层和剥离。本研究探测原子尺度的SE /电极接口的几种性质。采用Antiperovskite SE Li_(3)OCL(LOC)/ Li金属阳极接口作为模型系统,计算地预测界面能量,粘附性,润湿性,带边缘偏移和电化学窗口的界面能量,工作。确定氧封端的界面是最热力学稳定的。此外,该系统的粘附性的大型计算工作意味着Li将湿位,表明低界面抗性的可能性。然而,这些强界面相互作用以电化学稳定性的成本:强的界面键合在界面附近显着降低导电带最小(CBM)的能量,并将局部带隙缩小为30%。尽管电化学窗口的界面引起的界面诱导的减少,但LIC中的CBM仍然比Li / Li〜(+)氧化还原电位更负,暗示阳极减少稳定性。总之,本研究说明了在固态电池中评估电极/电解质界面特性的综合计算方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号