...
首页> 外文期刊>ACS applied materials & interfaces >Ultrasensitive Transmissive Infrared Spectroscopy via Loss Engineering of Metallic Nanoantennas for Compact Devices
【24h】

Ultrasensitive Transmissive Infrared Spectroscopy via Loss Engineering of Metallic Nanoantennas for Compact Devices

机译:超敏透射红外光谱光谱工程,金属纳米环损耗紧凑型器件

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Miniaturized infrared spectroscopy is highly desired for widespread applications, including environment monitoring, chemical analysis, and biosensing. Nanoantennas, as a promising approach, feature strong field enhancement and provide opportunities for ultrasensitive molecule detection even in the nanoscale range. However, current efforts for higher sensitivities by nanogaps usually suffer a trade-off between the performance and fabrication cost. Here, novel crooked nanoantennas are designed with a different paradigm based on loss engineering to overcome the above bottleneck. Compared to the commonly used straight nanoantennas, the crooked nanoantennas feature higher sensitivity and a better fabrication tolerance. Molecule signals are increased by 25 times, reaching an experimental enhancement factor of 2.8 x 10(4). The optimized structure enables a transmissive CO2 sensor with sensitivities up to 0.067% ppm(-1). More importantly, such a performance is achieved without sub-100 nm structures, which are common in previous works, enabling compatibility with commercial optical lithography. The mechanism of our design can be explained by the interplay of radiative and absorptive losses of nanoantennas that obeys the coupled-mode theory. Leveraging the advantage of the transmission mode in an optical system, our work paves the way toward cheap, compact, and ultrasensitive infrared spectroscopy.
机译:广泛的红外光谱对于广泛的应用,包括环境监测,化学分析和生物传感,非常需要小型化红外光谱。作为一个有前途的方法,纳米宁纳斯特征强大的田间增强,即使在纳米级范围内也为超敏分子检测提供了机会。然而,目前纳米盖的较高敏感性的努力通常在性能和制造成本之间进行权衡。在这里,新颖的弯曲纳米环绕是基于损耗工程的不同范式设计,以克服上述瓶颈。与常用的直纳米绕相比,弯曲的纳米环节具有更高的灵敏度和更好的制造耐受性。分子信号增加25次,达到2.8×10(4)的实验增强因子。优化的结构使透射二氧化碳传感器能够具有高达0.067%PPM(-1)的敏感性。更重要的是,在没有亚100nm结构的情况下实现这种性能,这在先前的工作中是常见的,从而能够与商业光学光刻兼容。我们的设计机制可以通过达到耦合模式理论的纳米环节的辐射和吸收损失的相互作用来解释。利用光学系统中传输模式的优势,我们的工作为便宜,紧凑和超敏红外光谱铺平了道路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号