首页> 外文期刊>ACS applied materials & interfaces >Rational Design of Nanoparticles to Overcome Poor Tumor Penetration and Hypoxia-Induced Chemotherapy Resistance: Combination of Optimizing Size and Self-Inducing High Level of Reactive Oxygen Species
【24h】

Rational Design of Nanoparticles to Overcome Poor Tumor Penetration and Hypoxia-Induced Chemotherapy Resistance: Combination of Optimizing Size and Self-Inducing High Level of Reactive Oxygen Species

机译:纳米颗粒的合理设计克服差肿瘤渗透性和缺氧诱导的化疗耐药性:优化尺寸和自诱导高水平的活性氧物质的组合

获取原文
获取原文并翻译 | 示例
           

摘要

One tough question induced by the hypoxia in cancer tissue is resistance to anticancer drugs basing on the reactive oxygen species (ROS) mechanism. Furthermore, the hypoxic regions locate in the center of tumor where tumor cells are easily residual and survival due to the poor drug-delivery efficiency even with nanocarriers. In this paper, these problems were well addressed through the rational combination of the enhanced penetration, self-inducing high level of intracellular ROS, and synchronously pH-sensitive drug release, realized by a simple structural and accessible copolymer, poly(poly(ethylene glycol) methyl ether methacrylate-co-(2-methylpropenoic acid-glycerol-cinnamaldehyde)) (PgEMC). For one thing, PgEMC could self-assemble into stable nanoparticles with PEG shell and optimizing diameters of 60 nm to simultaneously facilitate long blood circulation and deep tumor penetration. Second, cinnamylaldehyde moieties could detach from PgEMC NPs in intracellular acidic environment and trigger high level of ROS to allay the doxorubicin (DOX) resistance induced by hypoxia in solid malignancies. Furthermore, the DOX payload in PgEMC NPs could be synchronously released with the intracellular disassembly of PgEMC NPs due to the detaching of cinnamylaldehyde moieties. In 4T1 cells treated with PgEMC/DOX NPs, remarkable elevation of ROS level and enhanced DOX sensitivity in hypoxia environment were observed in in vitro studies. The results of tumor spheroid penetration indicated that 60 nm sized DOX-loaded PgEMC NPs (PgEMC(60)/DOX) could distribute into deep site of tumor at a high intensity. In vivo studies using a 4T1 breast tumor model, PgEMC(60)/DOX NPs, showed significant inhibition over 95.4% of the tumor growth. These results reveal that integrating optimizing size, self-inducing ROS, and pH-sensitive drug release into one small-sized nanoparticle can efficiently overcome the poor tumor penetration and hypoxia-induced chemotherapy resistance.
机译:缺氧在癌组织中诱导的一个难以造成的抗癌药物,抗抗癌药物抗性氧物质(ROS)机制。此外,缺氧区域位于肿瘤的中心,肿瘤细胞易于残留和存活,由于纳米载体即使是纳米载体的较差的药物输送效率。在本文中,通过具有增强的渗透,自诱导高水平的细胞内ROS和同步的pH敏感药物释放,通过简单的结构和可偏转的共聚物,聚(聚(乙二醇)甲基醚甲基丙烯酸酯 - 共同(2-甲基丙二酸甲酸 - 甘油 - 肉桂醛))(PGEMC)。对于一件事,PGEMC可以用PEG壳体自组装成稳定的纳米颗粒,并优化60nm的直径,以同时促进长血液循环和深肿瘤渗透。其次,肉桂醛部分可以在细胞内酸性环境中从PGEMC NPS分离,并引发高水平的RO,以尽管缺氧在固体恶性肿瘤中诱导的多柔比星(DOX)抗性。此外,由于肉桂醛部分的分离,PGEMC NPS中的DOX有效载荷可以与PGEMC NPS的细胞内拆卸同步释放。在用PGEMC / DOX NPS处理的4T1细胞中,在体外研究中观察到rOS水平的显着升高和增强的缺氧环境中的DOX敏感性。肿瘤球状渗透的结果表明,60nm大小的DOX加载的PGEMC NPS(PGEMC(60)/ dox)可以以高强度分配到肿瘤的深处。使用4T1乳腺肿瘤模型的体内研究,PGEMC(60)/ DOX NPS显示出肿瘤生长的95.4%的显着抑制。这些结果表明,将优化的尺寸,自诱导的ROS和pH敏感药物释放集成到一个小尺寸的纳米粒子中,可以有效地克服肿瘤渗透和缺氧诱导的化疗耐药性。

著录项

  • 来源
    《ACS applied materials & interfaces》 |2019年第35期|共12页
  • 作者单位

    Xinxiang Med Univ Coll Pharm Xinxiang 453003 Henan Peoples R China;

    Xinxiang Med Univ Coll Pharm Xinxiang 453003 Henan Peoples R China;

    Chinese Acad Sci Inst Biophys Key Lab Prot &

    Peptide Pharmaceut Beijing 100101 Peoples R China;

    Tianjin Univ Sch Chem Engn &

    Technol Dept Polymer Sci &

    Technol Key Lab Syst Bioengn Minist Educ Tianjin 300072 Peoples R China;

    Chinese Acad Sci Inst Biophys Key Lab Prot &

    Peptide Pharmaceut Beijing 100101 Peoples R China;

    Xinxiang Med Univ Coll Pharm Xinxiang 453003 Henan Peoples R China;

    Chinese Acad Sci Inst Biophys Key Lab Prot &

    Peptide Pharmaceut Beijing 100101 Peoples R China;

    Tianjin Univ Sch Chem Engn &

    Technol Dept Polymer Sci &

    Technol Key Lab Syst Bioengn Minist Educ Tianjin 300072 Peoples R China;

    Xinxiang Med Univ Coll Pharm Xinxiang 453003 Henan Peoples R China;

    Chinese Acad Sci Inst Biophys Key Lab Prot &

    Peptide Pharmaceut Beijing 100101 Peoples R China;

    Xinxiang Med Univ Coll Pharm Xinxiang 453003 Henan Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学工业;
  • 关键词

    hypoxia; penetration; chemotherapy resistance; reactive oxygen species; polymer nanoparticles;

    机译:缺氧;渗透;化学疗法;反应性氧物种;聚合物纳米颗粒;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号