首页> 外文期刊>ACS applied materials & interfaces >Nanocatalyst-Assisted Fine Tailoring of Pore Structure in Holey-Graphene for Enhanced Performance in Energy Storage
【24h】

Nanocatalyst-Assisted Fine Tailoring of Pore Structure in Holey-Graphene for Enhanced Performance in Energy Storage

机译:纳米催化剂辅助精细剪裁孔隙结构,用于增强储能性能

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Nanoporous holey-graphene (HG) shows potential versatility in several technological fields, especially in biomedical, water filtration, and energy storage applications. Particularly, for ultrahigh electrochemical energy storage applications, HG has shown promise in addressing the issue of low gravimetric and volumetric energy densities by boosting of the ion-transport efficiency in a high-mass-loaded graphene electrode. However, there are no studies showing complete control over the entire pore architecture and density of HG and their effect on high-rate energy storage. Here, we report a unique and cost-effective method for obtaining well-controlled HG, where a copper nanocatalyst assists the predefined porosity tailoring of the HG and leads to an extraordinary high pore density that exceeds 1 x 10(3) mu m(-2). The pore architectures of the hierarchical and homogenous pores of HG were realized through a rationally designed nanocatalyst and the annealing procedure in this method. The HG electrode with a high mass loading results in improved supercapacitor performance that is at least 1 order of magnitude higher than conventional graphene flakes (reduced electrochemically exfoliated graphene (rECG)) in areal capacitance (similar to 100% retention of capacitance until 15 000 cycles), energy density, and power density. The diffusion coefficient of the HG electrode is 1.5-fold higher than that of rECG at a mass loading of 15 mg cm(-2), indicating excellent ion-transport efficiency. The excellent ion-transport efficiency of HG is further proved by nearly 4-fold magnitude lowering of its R-ion (the ionic resistance in the electrolyte-filled pores) value as compared with rECG when estimated for equivalent high-mass loaded electrodes. Furthermore, the HG exhibits a packing density that is 2 orders of magnitude higher than rECG, revealing the utility of the maximum electrode mass and possessing higher volumetric capacitance. The perfect tailoring of HG with optimized porosity allows the achievement of high areal capacitance and excellent cycling stability due to the facile ion-and charge-transport at high-mass-loaded electrodes, which could open a new avenue for addressing the long-existing issue of practical application of graphene-based energy storage devices.
机译:纳米孔的HOLY-石墨烯(HG)在若干技术领域表示潜在的多功能性,特别是在生物医学,水过滤和能量储存应用中。特别是,对于超高电化学能量存储应用,HG通过在高批量装载的石墨烯电极中提高离子输送效率来解决低重量和体积能密度的问题。然而,没有关于整个孔隙结构和HG密度的完全控制的研究及其对高速储能的影响。在这里,我们报告了获得良好控制的HG的独特且经济效益的方法,其中铜纳米催化剂有助于HG的预定富孔隙率剪裁,并导致超过1×10(3)μm( - )的非凡的高孔密度2)。通过合理设计的纳米催化剂和在该方法中的退火程序实现了HG的分层和均匀孔的孔体系结构。具有高质量负荷的Hg电极导致改善的超级电容器性能,其比常规石墨烯片高至少1级(减少电化学剥离石墨烯(RECG))中的面积电容(类似于100%的电容保留直到15 000次循环。 ),能量密度和功率密度。 Hg电极的扩散系数比45mg cm(-2)的质量负载高1.5倍,表明优异的离子运输效率。与估计当量高质量负载电极的RECG相比,其R-离子(电解质填充孔中的离子电阻)的差异降低,进一步证明了Hg的优异离子转运效率。此外,HG表现出填充密度,其比REC高出2个级,揭示最大电极质量的效用并具有较高的体积电容。具有优化孔隙率的HG的完美剪裁允许在高批量负载电极处的容易离子和电荷运输引起的高面积电容和优异的循环稳定性,这可能开辟了一种解决长期问题的新途径基于石墨烯的能量存储装置的实际应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号