...
首页> 外文期刊>ACS applied materials & interfaces >Confining Iron Oxide Nanocubes inside Submicrometric Cavities as a Key Strategy To Preserve Magnetic Heat Losses in an Intracellular Environment
【24h】

Confining Iron Oxide Nanocubes inside Submicrometric Cavities as a Key Strategy To Preserve Magnetic Heat Losses in an Intracellular Environment

机译:将氧化铁纳米内部限制亚微米腔内作为保持细胞内环境中磁热损失的关键策略

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The design of magnetic nanostructures whose magnetic heating efficiency remains unaffected at the tumor site is a fundamental requirement to further advance magnetic hyperthermia in the clinic. This work demonstrates that the confinement of magnetic nanoparticles (NPs) into a sub-micrometer cavity is a key strategy to enable a certain degree of nanoparticle motion and minimize aggregation effects, consequently preserving the magnetic heat loss of iron oxide nanocubes (IONCs) under different conditions, including intracellular environments. We fabricated magnetic layer-by-layer (LbL) self-assembled polyelectrolyte sub-micrometer capsules using three different approaches, and we studied their heating efficiency as obtained in aqueous dispersions and after internalization by tumor cells. First, IONCs were added to the hollow cavities of LbL submicrocapsules, allowing the IONCs to move to a certain extent in the capsule cavities. Second, IONCs were coencapsulated into solid calcium carbonate cores coated with LbL polymer shells. Third, IONCs were incorporated within the polymer layers of the LbL capsule walls. In aqueous solution, higher specific absorption rate (SAR) values were related to those of free IONCs, while lower SAR values were recorded for capsule/core assemblies. However, after uptake by cancer cell lines (SKOV-3 cells), the SAR values of the free IONCs were significantly lower than those observed for capsule/core assemblies, especially after prolonged incubation periods (24 and 48 h). These results show that IONCs packed into submicrocavities preserve the magnetic losses, as the SAR values remained almost invariable. Conversely, free IONCs without the protective capsule shell agglomerated and their magnetic losses were strongly reduced. Indeed, IONC-loaded capsules and free IONCs reside inside endosomal and lysosomal compartments after cellular uptake and show strongly reduced magnetic losses due to the immobilization and aggregation in centrosymmetrical structures in the intracellular vesicles. The confinement of IONCs into sub-micrometer cavities is a key strategy to provide a sustained and predictable heating dose inside biological matrices.
机译:磁性纳米结构的设计,其磁性加热效率不受影响在肿瘤部位是一个基本要求,在临床中进一步提前磁体热疗。这项工作表明,磁性纳米粒子(NPS)将磁性纳米颗粒(NPS)的限制在亚微米腔中是能够在一定程度的纳米颗粒运动和最小化聚集效应的关键策略,从而保持不同条件,包括细胞内环境。我们使用三种不同的方法制造了逐层(LBL)自组装的聚电解质亚微米胶囊,我们研究了在含水分散体中获得的加热效率和肿瘤细胞内化后的加热效率。首先,将IONC添加到LBL亚壳胶囊的中空空腔中,使得IONC在胶囊腔中移动到一定程度。其次,将IONC载入涂有LBL聚合物壳的固体碳酸钙芯中。第三,IONC掺入LBL胶囊壁的聚合物层内。在水溶液中,较高的特异性吸收率(SAR)值与游离IONC的物质有关,而记录胶囊/核心组件的降低SAR值。然而,在通过癌细胞系(SKOV-3细胞)吸收后,游离IONC的SAR值显着低于胶囊/核心组件观察到的SAR值,特别是在长期孵育期(24和48小时)之后。这些结果表明,包装成亚微米的IONC保持磁力损失,因为SAR值几乎不变。相反,强烈地减少了没有保护胶囊壳壳的游离IONC和它们的磁性损失。实际上,负载离子胶囊和游离IONC在细胞摄取后驻留在内体和溶酶体隔室内,并且由于细胞内囊泡中的乘体体中的固定和聚集而显示出强烈降低的磁损失。 InOccs进入亚微米腔的限制是在生物基质内提供持续和可预测的加热剂量的关键策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号