首页> 外文期刊>ACS applied materials & interfaces >Using Low-Pressure Methane Adsorption Isotherms for Higher-Throughput Screening of Methane Storage Materials
【24h】

Using Low-Pressure Methane Adsorption Isotherms for Higher-Throughput Screening of Methane Storage Materials

机译:使用低压甲烷吸附等温线用于甲烷储存材料的高通量筛选

获取原文
获取原文并翻译 | 示例
           

摘要

A useful correlation between the low-pressure (up to 1.2 bar), low temperature (195 K) and high-pressure (up to 65 bar), room temperature (298 K) methane storage properties of a range of porous materials is reported. Methane isotherms under these two sets of conditions show a remarkable agreement in both equilibrium adsorption and deliverable capacities for materials with pore volumes that are less than approximately 0.80 cm(3)/g. This trend holds well for the suite of metal-organic frameworks and porous coordination cages we studied, in addition to a zeolite and porous organic cage. Although it is well known that gravimetric gas storage capacity trends with gravimetric surface area, the 1.2 bar, 195 K excess adsorption capacity of a given framework is a better indicator of its room temperature, 65 bar capacity. Given the significantly smaller sample quantities needed for low-pressure measurements, greater accessibility to researchers around the world, accuracy of the measurement, and higher throughput, we envision this method as a rapid screening tool for the identification of methane storage materials. As excess/total adsorption and gravimetric/volumetric adsorption can be interconverted by simple utilization of the scalar quantities of pore volume or density, respectively, this method can be easily adapted to obtain both gravimetric and volumetric total adsorption capacities for a given adsorbent. In terms of volumetric methane adsorption, we further investigate the relationship between crystallographic and bulk density for the adsorbents studied here. With this analysis, it becomes apparent that in the absence of novel synthetic approaches, reported volumetric storage capacities should be viewed as an optimistic upper limit for a given material and not necessarily a true reflection of its actual adsorption properties as most MOFs have bulk densities that are less than half of their crystallographic values.
机译:报道了低压(最多1.2巴),低温(195 k)和高压(最多65巴),室温(298k)甲烷储存性能之间的有用相关性。在这两套条件下,甲烷等温线在平衡吸附和具有小于约0.80cm(3)/ g的孔体积的材料的均衡吸附和可交换容量中显示出显着的协议。除了沸石和多孔有机笼外,这一趋势对于我们研究的金属有机框架和多孔协调笼。众所周知,众所周知,重量储气能力趋势具有重量表面积,1.2巴,195克给定框架的吸附容量是其室温的更好指示,65级酒吧容量。鉴于低压测量所需的显着较小的样本量,对世界各地的研究人员提供更大的可访问性,测量的准确性和吞吐量更高,我们将这种方法视为识别甲烷储存材料的快速筛选工具。由于过多/全吸附和重量/体积吸附可以通过简单地利用孔隙体积或密度的简单利用来互连,该方法可以容易地适于获得给定吸附剂的重量和体积总吸附能力。就体积甲烷吸附而言,我们进一步研究了这里研究的吸附剂的晶体和堆积密度之间的关系。通过这种分析,显而易见的是,在没有新颖的合成方法的情况下,报告的体积存储容量应该被视为给定材料的乐观上限,并且不一定是其实际吸附性能的真正反映,因为大多数MOF具有批量密度不到其晶体值的一半。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号