首页> 外文期刊>ACS applied materials & interfaces >Construction of Functionally Compartmental Inorganic Photocatalyst-Enzyme System via Imitating Chloroplast for Efficient Photoreduction of CO2 to Formic Acid
【24h】

Construction of Functionally Compartmental Inorganic Photocatalyst-Enzyme System via Imitating Chloroplast for Efficient Photoreduction of CO2 to Formic Acid

机译:通过模拟叶绿体施加功能性分区无机光催化剂 - 酶系统,用于高效光射到甲酸中的叶片

获取原文
获取原文并翻译 | 示例
       

摘要

Inorganic photocatalyst-enzyme systems are a prominent platform for the photoreduction of CO2 to value-added chemicals and fuels. However, poor electron transfer kinetics and enzyme deactivation by reactive oxygen species in the photoexcitation process severely limit catalytic efficiency. In chloroplast, enzymatic CO2 reduction and photoexcitation are compartmentalized by the thylakoid membrane, which protects enzymes from photo-damage, while the tightly integrated photosystem facilitates electron transfer, promoting photocatalysis. By mimicking this strategy, we constructed a novel functionally compartmental inorganic photocatalyst-enzyme system for CO2 reduction to formate. To accomplish efficient electron transfer, we first synthesized an integrated artificial photosystem by conjugation of the cocatalyst (a Rh complex) onto thiophene-modified C3N4 (TPE-C3N4), demonstrating an NADH regeneration rate of 9.33 mu M.min(-1), 2.33 times higher than that of a homogeneous counterpart. The enhanced NADH regeneration activity was caused by the tightly conjugated structure of the artificial photosystem, enabling rapid electron transfer from TPE-C3N4 to the Rh complex. To protect formate dehydrogenase (FDH) from photoinduced deactivation, FDH was encapsulated into MAF-7, a metal-organic framework (MOF) material, to compartmentalize FDH from the toxic photoexcitation process, similar to the function of the thylakoid membrane. Moreover, the triazole linkers of MAF-7 possess both hydrophilicity and pH-buffering capacity providing a stable microenvironment for FDH, which could enhance enzyme stability in photosynthesis. The synergy between the enhanced electron transfer of TPE-C3N4 for NADH cofactor regeneration and MOF- protection of the redox enzyme enables the construction of a functionally compartmental inorganic photocatalyst-enzyme association system, promoting CO2 photoconversion to formic acid with a yield of 16.75 mM after 9 h of illumination, 3.24 times greater than that of the homogeneous reaction counterpart.
机译:无机光催化剂 - 酶系统是用于将CO2光电拍摄到增值化学品和燃料的突出平台。然而,电子转移动力学和酶通过反应性氧物种在光透视过程中缺乏反应,严重限制催化效率。在叶绿体中,通过囊体膜分隔酶CO 2还原和光透视,其保护来自光损伤的酶,而紧密集成的光系统有助于电子转移,促进光催化。通过模仿这种策略,我们构建了一种用于CO 2的功能性分区无机光催化剂酶系统,用于减少甲酸。为了实现高效的电子转移,我们首先通过将助催化剂(RH复合物)缀合在噻吩改性的C3N4(TPE-C3N4)上合成综合人造光系统,证明NADH再生率为9.33μm.min(-1),比同类对应物高2.33倍。增强的NADH再生活性是由人造光系统的紧密共轭结构引起的,使得从TPE-C3N4到RH复合物的快速电子转移。为了保护甲酸脱氢酶(FDH)从光致失真,将FDH包封成MAF-7,金属 - 有机骨架(MOF)材料,以从有毒的光透明过程中分离FDH,类似于类囊膜膜的功能。此外,MAF-7的三唑接头具有亲水性和pH缓冲能力,为FDH提供稳定的微环境,这可以提高光合作用中的酶稳定性。 TPE-C3N4的增强电子转移与氧化铈酶的MOF-保护之间的协同作用使得能够构建功能性分区无机光催化剂 - 酶缔合物,促进CO 2光电转变对甲酸的产率为16.75mm照明9小时,比均质反应对应的3.24倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号