首页> 外文期刊>ACS applied materials & interfaces >Role of Alkali-Metal Cations in Electronic Structure and Halide Segregation of Hybrid Perovskites
【24h】

Role of Alkali-Metal Cations in Electronic Structure and Halide Segregation of Hybrid Perovskites

机译:碱金属阳离子在电子结构中的作用和杂交钙酸盐的卤化物偏析

获取原文
获取原文并翻译 | 示例
           

摘要

The ability to control or prevent phase segregation in perovskites is crucial to realizing stable and tunable mixed-halide optoelectronic devices. In this work, we systematically examine the impact of alkali-metal-cation (Cs+ and K+) concentration on the band structure, chemical composition, phase segregation, and polycrystalline microstructure on formamidinium-dominated mixed-halide mixed-cation perovskite films. It was found that the incorporation of Cs+ and K+ cations decreases the work function and the core levels of all components shift toward higher binding energy consistent with n-doping the perovskite film, which facilitates electron transfer to the electron transport layer TiO2. A concentration-dependent film structure was observed by X-ray photoemission spectroscopy and grazing incidence wide-angle X-ray scattering where the halides and cations are distributed evenly across perovskite films at low metallic cation concentration (5%). A high metal-cation ratio (20%) leads to halide segregation within the perovskite film and the surface becomes bromide-poor, whereas the bromide and metal cations diffuse more deeply within the film. These differences in electronic properties, element distribution, and film morphology were reflected in the device performance where the power conversion efficiency of low-metallic-cation concentration (5% of Cs+ and K+) perovskite solar cells is approximate to 5% higher than the high-concentration ones (20%). This study provides valuable chemical and physical insight into the underlying trade-offs in the careful tuning of electrical properties and film structure to optimize multication and mixed-halide hybrid perovskites.
机译:控制或防止钙锌矿相隔离的能力对于实现稳定和可调卤化卤化卤化物光电器件至关重要。在这项工作中,我们系统地检查碱金属 - 阳离子(Cs +和K +)浓度对带结构,化学成分,相偏析和多晶微观结构上的甲脒硫化物束混合卤化物混合阳离子钙钛矿膜的影响。结果发现Cs +和K +阳离子的掺入降低了工作功能,并且所有组分的核心水平朝向高掺杂钙钛矿膜的较高的结合能量,这有利于电子转移到电子传输层TiO2。通过X射线照射光谱观察到浓度依赖性膜结构,并在低金属阳离子浓度(5%)下均匀地分布卤化物和阳离子的卤化物和阳离子。高金属阳离子比(20%)导致钙钛矿膜内的卤化物偏析,表面变为溴化物差,而溴化物和金属阳离子在薄膜内更深入地扩散。这些电子性质,元素分布和薄膜形态的这些差异反映在低金属阳离子浓度(5%的Cs +和K +和K +)钙钛矿太阳能电池的电力转换效率高于高于高度的5% - 复杂(20%)。本研究提供了有价值的化学和物理洞察力,在仔细调整电气性能和薄膜结构中,以优化多次混合卤化卤化钙酯。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号