首页> 外文期刊>ACS applied materials & interfaces >Optical and Electrical Properties of Organic Semiconductor Thin Films on Aperiodic Plasmonic Metasurfaces
【24h】

Optical and Electrical Properties of Organic Semiconductor Thin Films on Aperiodic Plasmonic Metasurfaces

机译:非周期性等离子体元裂缝上有机半导体薄膜的光学和电性能

获取原文
获取原文并翻译 | 示例
       

摘要

Metal electrodes are playing an increasingly important role in controlling photon absorption and in promoting optimal light management in thin-film semiconductor devices. For organic optoelectronic devices, the conventional fabrication approach is to build the device on top of a transparent electrode, with metal electrode deposition as the last step. This makes it challenging to control the surface of the metal electrode to promote good light management properties. An inverted fabrication approach that builds the device on top of a metal electrode makes it possible to control the morphology of the metal surface independently of the organic semiconductor active layer to achieve a variety of photonic and plasmonic behaviors useful for devices. However, there are few reports of inverted fabrication of organic optoelectronic devices and its impacts on device properties. Silver (Ag) is the most suitable metal for fabrication of nanostructured electrodes with plasmonic behavior (i.e., plasmonic electrodes) because of its low parasitic absorption loss and high reflectivity. In this project, we describe the facile fabrication of silver nanoparticle (AgNP) aperiodic plasmonic metasurfaces and study their physical and optical characteristics. Then, we investigate the photonic and electrical behaviors of the aperiodic plasmonic metasurfaces when interfaced with poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) organic semiconducting polymer thin films. The luminescence quantum yield of F8BT thin films increases from 29% on planar Ag up to 66% on AgNP metasurfaces due to the Purcell effect and the improved extraction of emission coupled to surface plasmon polariton modes. In particular, we show that plasmonic enhancement can overcome ohmic losses associated with metals and metal-induced exciton quenching. According to the current-voltage characteristics of hole-only devices with and without aperiodic plasmonic metasurfaces, we conclude that AgNP aperiodic plasmonic metasurfaces have comparable electrical behavior to planar metal electrodes while having superior light management capability.
机译:金属电极在控制光子吸收和促进薄膜半导体器件中的最佳光管理方面发挥着越来越重要的作用。对于有机光电器件,传统的制造方法是在透明电极顶部构建装置,金属电极沉积作为最后一步。这使得控制金属电极的表面促进良好的光管理性能来挑战。将装置构建在金属电极顶部的倒置制造方法使得可以独立于有机半导体有源层控制金属表面的形态,以实现可用于器件的各种光子和等离子体行为。然而,关于有机光电器件的倒置制造的报道很少及其对装置性质的影响。银(Ag)是最合适的金属,用于制造具有等离子体行为(即等离子体电极)的纳米结构电极,因为其低寄生吸收损失和高反射率。在该项目中,我们描述了银纳米粒子(AGNP)非周期性等离子体浆膜浆料的容量制作,以及研究其物理和光学特性。然后,我们研究与聚(9,9-二辛基 - ALT-BENZOTESDIAZOLE)(F8BT)有机半导体聚合物薄膜界面时对非周期性等离子体元件的光子和电能。 F8BT薄膜的发光量子产率从平面Ag的29%增加到66%,由于斑块效应和改进的发射耦合到表面等离子体极化膜模式。特别是,我们表明,等离子体增强可以克服与金属和金属诱导的激子猝灭相关的欧姆损失。根据具有非周期性等离子体元件的孔的电流电压特性,我们得出结论,AGNP非周期性等离子体元件对平面金属电极具有相当的电气行为,同时具有优异的光管理能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号