首页> 外文期刊>ACS applied materials & interfaces >Co-Evaporated p-i-n Perovskite Solar Cells beyond 20% Efficiency: Impact of Substrate Temperature and Hole-Transport Layer
【24h】

Co-Evaporated p-i-n Perovskite Solar Cells beyond 20% Efficiency: Impact of Substrate Temperature and Hole-Transport Layer

机译:共蒸发的P-I-N钙钛矿太阳能电池超过20%的效率:基板温度和空穴传输层的影响

获取原文
获取原文并翻译 | 示例
           

摘要

For methylammonium lead iodide perovskite solar cells prepared by co-evaporation, power conversion efficiencies of over 20% have been already demonstrated, however, so far, only in n-i-p configuration. Currently, the overall major challenges are the complex evaporation characteristics of organic precursors that strongly depend on the underlying charge selective contacts and the insufficient reproducibility of the coevaporation process. To ensure a reliable co-evaporation process, it is important to identify the impact of different parameters in order to develop a more detailed understanding. In this work, we study the influence of the substrate temperature, underlying hole-transport layer (polymer PTAA versus self-assembling monolayer molecule MeO-2PACz), and perovskite precursor ratio on the morphology, composition, and performance of co-evaporated p-i-n perovskite solar cells. We first analyze the evaporation of pure precursor materials and show that the adhesion of methylammonium iodide (MAI) is significantly reduced with increased substrate temperature, while it remains almost unaffected for lead iodide (PbI2). This substrate temperature-dependent evaporation behavior of MAI is also transferred to the co-evaporation process and can directly influence the perovskite composition. We demonstrate that the optimal substrate temperature window for perovskite deposition is close to room temperature. At high temperature, not enough MAI for precise stoichiometry is incorporated even with very high MAI rates. While, at temperatures below -25 degrees C, the conversion of MAI with PbI2 is inhibited, and an amorphous yet unreacted film is formed. We observe that perovskite composition and morphology vary widely between the organic hole-transport layers (HTLs) PTAA and MeO-2PACz. For all substrate temperatures, MeO-2PACz enables higher solar cell PCEs than PTAA. Through the combination of vapor-deposited perovskites and a self-assembled monolayer, we achieve a stabilized power conversion efficiency of 20.6%, which is the first reported PCE above 20% for evaporated perovskite solar cells in p-i-n architecture.
机译:对于通过共蒸发制备的甲基铅碘化物钙钛矿太阳能电池,已经已经证明了超过20%的功率转化效率,但到目前为止,仅在N-I-P配置中。目前,整体主要挑战是有机前体的复杂蒸发特征,强烈取决于潜在的电荷选择性接触和辛施流的不足的再现性。为了确保可靠的共蒸发过程,重要的是要确定不同参数的影响,以便更详细地了解。在这项工作中,我们研究了基板温度,下面的空穴传输层(聚合物PTAA与自组装单层分子MeO-2PacZ)的影响,以及钙钛矿前体比对共蒸发销Perovskite的形态,组成和性能太阳能电池。首先,分析纯前体材料的蒸发,并表明甲基碘化甲基碘化甲基碘化物(MAI)的粘附性显着降低,随着碱温度的增加,它几乎不受铅碘化物(PBI2)。该碱的温度依赖性蒸发行为也转移到共蒸发过程中,可以直接影响钙钛矿组合物。我们证明,用于钙钛矿沉积的最佳衬底温度窗是接近室温。在高温下,对于精确的化学计量而不是足够的MAI即使是具有非常高的MAI率。虽然在低于-25摄氏度的温度下,抑制了与PBI2的MAI的转化,形成无定形又一个未反应的薄膜。我们观察到钙钛矿组成和形态在有机空穴 - 运输层(HTLS)PTAA和MEO-2Pacz之间广泛变化。对于所有基板温度,Meo-2Pacz能够比Ptaa更高的太阳能电池PCE。通过蒸汽沉积的钙钛矿和自组装单层的组合,达到20.6%的稳定功率转换效率,这是在P-I-N结构中蒸发的钙钛矿太阳能电池的第一个报告的PCE。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号