首页> 外文期刊>ACS applied materials & interfaces >Competing Dissolution Pathways and Ligand Passivation-Enhanced Interfacial Stability of Hybrid Perovskites with Liquid Water
【24h】

Competing Dissolution Pathways and Ligand Passivation-Enhanced Interfacial Stability of Hybrid Perovskites with Liquid Water

机译:竞争溶解途径和配体钝化增强液体水杂交钙酸盐的界面稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

Material instability issues, especially moisture degradation in ambient operating environments, limit the practical application of hybrid perovskite in photovoltaic and light-emitting devices. Very recent experiments demonstrate that ligand passivation can effectively improve the surface moisture tolerance of hybrid perovskites. In this work, the interfacial stability of as-synthesized pristine and alkylammonium-passivated methylammonium lead iodide (MAPbI(3)) with liquid water is systematically investigated using molecular dynamics simulations and reaction kinetics models. Interestingly, the more hydrophilic [PbI2](0) surface is more stable than the less hydrophilic [MAI](0) surface because of the higher polarity of the former surface. Linear alkylammoniums significantly stabilize the [MAI]0 surface with highly reduced (by 1-2 orders of magnitude) dissociation rates of both MA(+) and ligands themselves, while branched ligands, surprisingly, lead to higher dissociation rates as the surface coverage increases. Such anomalous behavior is attributed to the aggregation-assisted dissolution of surfactant-like ligands as micelles during the degradation process. Short-chain linear alkylammonium at the full surface coverage is found to be the optimal ligand to stabilize the [MAI](0) surface. This work not only provides fundamental insights into the ionic dissolution pathways and mechanisms of hybrid perovskites in water but also inspires the design of highly stable hybrid perovskites with ligand passivation layers. The computational framework developed here is also transferrable to the investigation of surface passivation chemistry for weak ionic materials in general.
机译:材料不稳定问题,特别是环境操作环境中的水分降解,限制了杂交钙钛矿在光伏和发光器件中的实际应用。最近的实验表明,配体钝化可以有效地改善杂交钙酸盐的表面耐湿性。在这项工作中,使用分子动力学模拟和反应动力学模型来系统地研究了用液面水的合成原始和酰胺钝的甲基铅碘化物(MAPBI(3))的界面稳定性。有趣的是,由于前表面的较高极性,更亲水的[PbI2](0)表面比亲水性[Mai](0)表面更稳定。线性烷基铵显着稳定[Mai] 0表面,高度降低(左右1-2次)解离率,同时支链配体令人惊讶的是,随着表面覆盖的增加,导致更高的解离速率。这种异常行为归因于在降解过程中作为胶束的表面活性剂样配体的聚集辅助溶解。发现全表面覆盖的短链线性烷基烷基是最佳的配体,以稳定[MAI](0)表面。这项工作不仅为杂交钙酸盐在水中的离子溶解途径和机制提供了根本的见解,而且还激发了具有配体钝化层的高度稳定杂交钙酸盐的设计。这里开发的计算框架还可以转移到一般来说弱离子材料的表面钝化化学的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号