...
首页> 外文期刊>ACS applied materials & interfaces >Toward Optimized Radial Modulation of the Space-Charge Region in One-Dimensional SnO2-NiO Core-Shell Nanowires for Hydrogen Sensing
【24h】

Toward Optimized Radial Modulation of the Space-Charge Region in One-Dimensional SnO2-NiO Core-Shell Nanowires for Hydrogen Sensing

机译:用于优化一维SnO2-NiO核心 - 壳纳米线的空间电荷区的径向调制,用于氢气感应

获取原文
获取原文并翻译 | 示例
           

摘要

The gas-sensing properties and mechanism and the role of the shell thickness of structurally well-defined SnO2/NiO heterostructures are studied. One-dimensional (1D) SnO2/NiO core-shell nanowires (CSNWs) were produced by a two-step process; singlecrystalline SnO2-core nanowires (NWs) were synthesized by vapor- liquid-solid (VLS) deposition and then decorated with a polycrystalline NiO-shell layer by atomic layer deposition (ALD). The thickness of the NiO-shell layer was precisely controlled between 2 and 8.2 nm. The electrical conductance of the sensors was decreased many orders of magnitude with the NiO coating, suggesting that the conductivity of the sensors is dominated by Schottky barrier junctions across the n(core)-p(shell) interfaces. The gas-sensing response of pristine SnO2 NWs and SnO2/NiO CSNWs sensors with various thicknesses of the NiO-shell layers was investigated toward hydrogen at various temperatures. The response of the SnO2/NiO-X (X is the number of ALD cycles) CSNWs significantly depends on the thickness of the NiO-shell layer. The SnO2/NiO-100 sensor showed the best performance (NiO-shell thickness ca. 4.1 nm), where the radial modulation of the space-charge region is maximized. The sensing response of the SnO2/NiO-100 sensor was 114 for 500 ppm of hydrogen at 500 degrees C, which was about four times higher than the response of pristine SnO2 NWs. The sensing mechanism is mainly based on the formation of a p-n junction at the p-NiO-shell and the n-SnO2-core interface and the modulation of the hole-accumulation region in the NiO-shell layer. The remarkable performance of the SnO2/NiO CSNWs sensors toward hydrogen is attributed to the high surface to volume ratio of the 1D SnO2 core-NWs, the conformal NiO shell layer, and the optimized shell layer thickness radially modulating the space-charge regions.
机译:研究了气体感测性能和机理以及结构良好定义的SnO2 / NiO异质结构的壳厚度的作用。一维(1D)SnO2 / NiO核壳纳米线(CSNWS)由两步工艺生产;通过气相 - 固体(VLS)沉积合成单晶的SnO2芯纳米线(NWS),然后通过原子层沉积(ALD)用多晶NiO-壳层装饰。将NiO-壳层的厚度精确地控制在2和8.2nm之间。传感器的电导率随NIO涂层减少了许多数量级,表明传感器的电导率由跨越N(核心)-P(壳)接口的肖特基势垒连接主导。在各种温度下研究了具有各种厚度的具有各种厚度的NiO-壳层的丙氨酸SnO2NWS和SnO2 / NiO CSNWS传感器的气体传感响应。 SnO2 / NiO-X(x是ALD循环的数量)CSNW的响应显着取决于NiO-壳层的厚度。 SnO2 / NiO-100传感器显示出最佳性能(NiO-壳厚度Ca.4.1nm),其中空间电荷区域的径向调制最大化。 SnO2 / NiO-100传感器的感测响应为500ppm的氢气为500℃,比原始SnO2NWS的响应高约4倍。传感机制主要基于在P-NIO-壳和N-SNO2芯界面处形成P-N结和NIO-壳层中的空穴累积区域的调制。 SnO2 / NIO CSNWS传感器对氢的显着性能归因于1D SnO2核心NWS,保形NiO壳层和优化的壳层厚度的高表面与径向调制空间电荷区域的高度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号