首页> 外文期刊>ACS applied materials & interfaces >Graphene Surfaces Interaction with Proteins, Bacteria, Mammalian Cells, and Blood Constituents: The Impact of Graphene Platelet Oxidation and Thickness
【24h】

Graphene Surfaces Interaction with Proteins, Bacteria, Mammalian Cells, and Blood Constituents: The Impact of Graphene Platelet Oxidation and Thickness

机译:石墨烯表面与蛋白质,细菌,哺乳动物细胞和血液成分的相互作用:石墨烯血小板氧化和厚度的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Graphene-based materials (GBMs) have been increasingly explored for biomedical applications. However, interaction between GBMs-integrating surfaces and bacteria, mammalian cells, and blood components, that is, the major biological systems in our body, is still poorly understood. In this study, we systematically explore the features of GBMs that most strongly impact the interactions of GBMs films with plasma proteins and biological systems. Films produced by vacuum filtration of GBMs with different oxidation degree and thickness depict different surface features: graphene oxide (GO) and few-layer GO (FLGO) films are more oxidized, smoother, and hydrophilic, while reduced GO (rGO) and few-layer graphene (FLG) are less or nonoxidized, rougher, and more hydrophobic. All films promote glutathione oxidation, although in a lower extent by rGO, indicating their potential to induce oxidative stress in biological systems. Human plasma proteins, which mediate most of the biological interactions, adsorb less to oxidized films than to rGO and FLG. Similarly, clinically relevant bacteria, Staphylococcus epidermidis, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli, adhere less to GO and FLGO films, while rGO and FLG favor bacterial adhesion and viability. Surface features caused by the oxidation degree and thickness of the GBMs powders within the films have less influence toward human foreskin fibroblasts; all materials allow cell adhesion, proliferation and viability up to 14 days, despite less on rGO surfaces. Blood cells adhere to all films, with higher numbers in less or nonoxidized surfaces, despite none having caused hemolysis (<5%). Unlike thickness, oxidation degree of GBMs platelets strongly impact surface morphology/topography/chemistry of the films, consequently affecting protein adsorption and thus bacteria, fibroblasts and blood cells response. Overall, this study provides useful guidelines regarding the choice of the GBMs to use in the development of surfaces for an envisioned application. Oxidized materials appear as the most promising for biomedical applications that require low bacterial adhesion without being cytotoxic to mammalian cells.
机译:基于石墨烯的材料(GBMS)越来越探索了生物医学应用。然而,GBMS整合表面和细菌之间的相互作用,哺乳动物细胞和血液成分,即我们体内主要生物系统,仍然很清楚。在这项研究中,我们系统地探讨了GBMS的特征,最强烈影响GBMS膜与血浆蛋白和生物系统的相互作用。通过不同氧化度和厚度的GBMS真空过滤产生的薄膜,描绘了不同的表面特征:石墨烯氧化物(GO)和几层去(Flgo)膜更加氧化,更平滑和亲水,同时降低(RGO)和很少 - 层石墨烯(FLG)较少或不氧化,更粗糙,更疏水。所有薄膜均促进谷胱甘肽氧化,尽管在rgo的较低程度上,表明它们在生物系统中诱导氧化应激的可能性。介导大部分生物相互作用的人血浆蛋白,比氧化膜更少,而不是RGO和FLG。同样,临床相关的细菌,葡萄球菌,金黄色葡萄球菌,假单胞菌铜绿假单胞菌和大肠杆菌,粘附较少,而RGO和FLG有利于细菌粘附和活力。由膜内的GBMS粉末的氧化度和厚度引起的表面特征对人包皮成纤维细胞的影响较小;尽管RGO表面较少,但所有材料均可允许细胞粘附,增殖和活力长达14天。血细胞粘附在所有薄膜上,在较少或不氧化的表面上具有更高的数量,尽管没有导致溶血(<5%)。与厚度不同,GBMS血小板的氧化程度强烈冲击表面形态/地形/化学/化学物质,从而影响蛋白质吸附,从而影响细菌,成纤维细胞和血细胞反应。总体而言,本研究提供了有关选择GBMS的有用指导,用于在迎宾应用程序的表面开发中使用。氧化材料表现为需要低细菌粘合而不是哺乳动物细胞的细胞毒性的生物医学应用中最有希望的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号