首页> 外文期刊>ACS applied materials & interfaces >Solution Evaporation-Driven Crumpling and Assembling of Large-Accessible-Space, High-Mechanical-Strength Graphene/Carbon Nanotube Composite Nanoparticles
【24h】

Solution Evaporation-Driven Crumpling and Assembling of Large-Accessible-Space, High-Mechanical-Strength Graphene/Carbon Nanotube Composite Nanoparticles

机译:溶液蒸发驱动的褶皱和组装大型无障碍空间,高机械强度石墨烯/碳纳米管复合纳米粒子

获取原文
获取原文并翻译 | 示例
       

摘要

Crumpled graphene particles that are converted and assembled from 2D planar graphene sheets create a subtle material platform for widespread applications of graphene in a low-cost and scalable manner. However, such crumpled particles are suffering from small spatial availabilities in geometry and low strength in mechanical deformation due to the limited numbers and stabilities of connections among individual deformed graphene. Herein, we report, in both theoretical analysis and large-scale atomistic simulations, that a crumpled graphene composite nanoparticle with large accessible space and high mechanical strength can be achieved by encapsulating folded carbon nanotubes (CNTs) inside via a solvent evaporation-induced assembly approach. A unified energy-based theoretical model is developed to address the kinetic migration of both CNTs and graphene suspended in a liquid droplet and their crumpling and assembling mechanism into a composite particle by solution evaporation. The contact probability, surface ridge densities, and geometric size in assembled graphene/CNT composite nanoparticles are quantitatively extracted after the complete evaporation of liquid and are further correlated with their accessible space including accessible surface area and volume and mechanical strength. The coarse-grained molecular dynamics simulations are conducted to uncover structural and morphological evolution of graphene/CNT composite nanoparticles with solution evaporation, and the results show remarkable agreement with theoretical predictions. This study offers a theoretical foundation for synthesizing highly connected, mechanically enhanced, crumpled particles with tunable spatial porous structures by tailoring graphene and CNTs for applications in functional structures and devices.
机译:从2D平面石墨烯片转换和组装的皱型石墨烯颗粒为石墨烯的广泛应用以低成本和可扩展的方式产生微妙的材料平台。然而,由于个体变形石墨烯之间的有限和连接的稳定性,这种皱折的颗粒在机械变形中的几何形状和低强度患有小的空间可用性。在本文中,在理论分析和大规模原子模拟中,通过通过溶剂蒸发诱导的组装方法封装折叠的碳纳米管(CNT),可以通过将折叠的碳纳米管(CNTS)封装在内的可接近空间和高机械强度的皱巴巴的石墨烯复合纳米粒子。开发了一种统一的能量的理论模型,以通过溶液蒸发解决悬浮在液滴中的CNT和石墨烯的动力学和石墨烯的动力学迁移到复合颗粒中。在液体完全蒸发之后定量提取组装石墨烯/ CNT复合纳米粒子中的接触概率,表面脊密度和几何尺寸,并与其可接近的空间进一步相关,包括可接近的表面积和体积和机械强度。进行粗粒化分子动力学模拟,以揭示石墨烯/ CNT复合纳米粒子的结构和形态学,并溶液蒸发,结果表现出与理论预测的显着协议。本研究提供了一种理论基础,用于通过剪裁石墨烯和CNT来合成具有可调谐空间多孔结构的高连接,机械增强的皱折的颗粒,用于在功能结构和装置中的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号