...
首页> 外文期刊>ACS nano >Decorating Graphene Oxide with Ionic Liquid Nanodroplets: An Approach Leading to Energy-Dense, High-Voltage Supercapacitors
【24h】

Decorating Graphene Oxide with Ionic Liquid Nanodroplets: An Approach Leading to Energy-Dense, High-Voltage Supercapacitors

机译:用离子液体纳米液体装饰石墨烯氧化物:一种导致能量密度,高压超级电容器的方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

src="http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/ancac3/2017/ancac3.2017.11.issue-10/acsnano.7b04467/20171018/images/medium/nn-2017-04467x_0009.gif">A major stumbling block in the development of high energy density graphene-based supercapacitors has been maintaining high ion-accessible surface area combined with high electrode density. Herein, we develop an ionic liquid (IL)–surfactant microemulsion system that is found to facilitate the spontaneous adsorption of IL-filled micelles onto graphene oxide (GO). This adsorption distributes the IL over all available surface area and provides an aqueous formulation that can be slurry cast onto current collectors, leaving behind a dense nanocomposite film of GO/IL/surfactant. By removing the surfactant and reducing the GO through a low-temperature (360 °C) heat treatment, the IL plays a dual role of spacer and electrolyte. We study the effect of IL content and operating temperature on the performance, demonstrating a record high gravimetric capacitance (302 F/g at 1 A/g) for 80 wt % IL composites. At 60 wt % IL, combined high capacitance and bulk density (0.76 g/cm3), yields one of the highest volumetric capacitances (218 F/cm3, at 1 A/g) ever reported for a high-voltage IL-based supercapacitor. While achieving promising rate performance and cycle-life, the approach also eliminates the long and costly electrolyte imbibition step of cell assembly as the electrolyte is cast directly with the electrode material.
机译:src =“http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/ancac3/2017/ancac3.2017.11.issue-10/acsnano.7b018/images/medium/nn -2017-04467x_0009.gif“>高能量密度石墨烯的超级电容器的大型绊脚石已经保持高离子可接近的表面积与高电极密度组合。在此,我们开发了一种离子液体(IL) - 坚固活性剂微乳液系统,该系统被发现促进IL填充胶束的自发吸附到石墨烯(GO)上。该吸附在所有可用的表面积上分布IL,并提供水性制剂,其可以是浆料浇铸到集电器上,留下GO / IL /表面活性剂的致密纳米复合膜。通过除去表面活性剂并通过低温(360℃)的热处理,IL起间隔和电解质的双重作用。我们研究IL含量和工作温度对性能的影响,用于80wt%IL复合材料的记录高重量电容(302 f / g以1a / g)。在60wt%IL中,组合高电容和堆积密度(0.76g / cm 3 ),产生最高容量电容(218 f / cm 3 ,1 A / G)报告了高压IL的超级电容器。在实现有前途的速率和循环寿命的同时,该方法还消除了电池组件的长且昂贵的电解质吸收步骤,因为电解质直接与电极材料浇铸。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号