...
首页> 外文期刊>ACS nano >Revealing the Cell-Material Interface with Nanometer Resolution by Focused Ion Beam/Scanning Electron Microscopy
【24h】

Revealing the Cell-Material Interface with Nanometer Resolution by Focused Ion Beam/Scanning Electron Microscopy

机译:通过聚焦离子束/扫描电子显微镜通过聚焦离子束/扫描电子显微镜揭示具有纳米分辨率的细胞 - 材料界面

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The interface between cells and nonbiological surfaces regulates cell attachment, chronic tissue responses, and ultimately the success of medical implants or biosensors. Clinical and laboratory studies show that topological features of the surface profoundly influence cellular responses; for example, titanium surfaces with nano- and microtopographical structures enhance osteoblast attachment and host implant integration as compared to a smooth surface. To understand how cells and tissues respond to different topographical features, it is of critical importance to directly visualize the cell material interface at the relevant nanometer length scale. Here, we present a method for in situ examination of the cell-to material interface at any desired location, based on focused ion beam milling and scanning electron microscopy imaging to resolve the cell membrane-to-material interface-with 10 nm resolution. By examining how cell membranes interact with topographical features such as nanoscale protrusions or invaginations, we discovered that the cell membrane readily deforms inward and wraps around protruding structures, but hardly deforms outward to contour invaginating structures. This asymmetric membrane response (inward vs outward deformation) causes the cleft width between the cell membrane and the nanostructure surface to vary by more than an order of magnitude. Our results suggest that surface topology is a crucial consideration for the development of medical implants or biosensors whose performances are strongly influenced by the cell-to-material interface. We anticipate that the method can be used to explore the direct interaction of cells/tissue with medical devices such as metal implants in the future.
机译:细胞和非生物表面之间的界面调节细胞附着,慢性组织反应,并最终是医疗植入物或生物传感器的成功。临床和实验室研究表明,表面的拓扑特征深受细胞反应的深刻影响;例如,与光滑的表面相比,具有纳米和微竞选结构的钛表面增强了成骨细胞附着和主植入物集成。为了了解细胞和组织如何应对不同的地形特征,直接以相关纳米长度尺度直接可视化细胞材料界面是至关重要的。这里,我们基于聚焦离子束铣削和扫描电子显微镜成像来介绍一种用于在任何所需位置处的电池到材料界面的方法,以解决细胞膜与材料界面 - 以10nm分辨率分辨。通过检查蜂窝膜如何与纳米级突起或造林等地形特征相互作用,我们发现细胞膜容易地向内变形并围绕突出结构缠绕,但是几乎不会向外变形到轮廓造型结构。这种不对称膜响应(向内VS向外变形)导致电池膜和纳米结构表面之间的裂缝宽度变化,以大于多个数量级。我们的研究结果表明,表面拓扑结构对于开发医疗植入物或生物传感器的关键考虑,其性能受到细胞对材料界面的强烈影响。我们预期该方法可用于探索细胞/组织与未来金属植入物等医疗设备的直接相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号