首页> 外文期刊>ACS nano >Unraveling Antimicrobial Susceptibility of Bacterial Networks on Micropillar Architectures Using Intrinsic Phase-Shift Spectroscopy
【24h】

Unraveling Antimicrobial Susceptibility of Bacterial Networks on Micropillar Architectures Using Intrinsic Phase-Shift Spectroscopy

机译:使用内在相移光谱法解开细菌网络对微米架构的抗菌敏感性

获取原文
获取原文并翻译 | 示例
           

摘要

With global antimicrobial resistance becoming increasingly detrimental to society, improving current clinical antimicrobial susceptibility testing (AST) is crucial to allow physicians to initiate appropriate antibiotic treatment as early as possible, reducing not only mortality rates but also the emergence of resistant pathogens. In this work, we tackle the main bottlenecks in clinical AST by designing biofunctionalized silicon micropillar arrays to provide both a preferable solid liquid interface for bacteria networking and a simultaneous transducing element that monitors the response of bacteria when exposed to chosen antibiotics in real time. We harness the intrinsic ability of the micropillar architectures to relay optical phase-shift reflectometric interference spectroscopic measurements (referred to as PRISM) and employ it as a platform for culture-free, label-free phenotypic AST. The responses of E. coli to various concentrations of five clinically relevant antibiotics are optically tracked by PRISM, allowing for the minimum inhibitory concentration (MIC) values to be determined and compared to both standard broth microdilution testing and clinic-based automated AST system readouts. Capture of bacteria within these microtopologies, followed by incubation of the cells with the appropriate antibiotic solution, yields rapid determinations of antibiotic susceptibility. This platform not only provides accurate MIC determinations in a rapid manner (total assay time of 2-3 h versus 8 h with automated AST systems) but can also be employed as an advantageous method to differentiate bacteriostatic and bactericidal antibiotics.
机译:随着全球抗菌抗性对社会越来越有害,改善目前的临床抗微生物敏感性测试(AST)至关重要,允许医生尽早开始适当的抗生素治疗,不仅减少死亡率,而且还减少了抗性病原体的出现。在这项工作中,我们通过设计生物官能化硅片微米阵列来解决临床AST中的主要瓶颈,以提供用于细菌网络的优选的固体液体界面,以及同时转换元件,其在实时地暴露于所选抗生素时监测细菌的响应。我们利用了微米架构的内在能力,以中继光学相移反射射频干扰光谱测量(称为棱镜),并将其作为无培养的无标记表型AST的平台。通过棱镜光学跟踪大肠杆菌至各种浓度五种临床相关抗生素的反应,允许测定最低抑制浓度(MIC)值,并与标准的肉汤微量稀释测试和基于临床的自动AST系统读数进行比较。在这些显微缺乏症中捕获细菌,然后用适当的抗生素溶液培养细胞,得到抗生素易感性的快速测定。该平台不仅以快速的方式提供精确的麦克风测定(通过自动AST系统与8小时的总测定时间为2-3小时),但也可以作为区分抑菌和杀菌抗生素的有利方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号