首页> 外文期刊>Crystal growth & design >Application of Model-Free and Model-Based Quality-by-Control (QbC) for the Efficient Design of Pharmaceutical Crystallization Processes
【24h】

Application of Model-Free and Model-Based Quality-by-Control (QbC) for the Efficient Design of Pharmaceutical Crystallization Processes

机译:无模型和基于模型的质量逐控制(QBC)的应用在高效设计药物结晶过程

获取原文
获取原文并翻译 | 示例
           

摘要

The design of pharmaceutical crystallization processes is a challenging engineering problem because of the specific and versatile quality requirements of the end-product, amplified by the tight regulatory standards. The current industrial standard for crystallization process design is based on the use of the quality-by-design (QbD) framework, which relies on factorial design of experiments (DoE). Hence, QbD inherently generates a large number of resource-consuming open loop crystallization experiments. This is especially true when more complex operating conditions need to be designed, such as temperature cycles, which require a large number of decision variables in the DoE. In contrast, the recently proposed quality-by-control (QbC) approach relies on feedback control algorithms to directly achieve the desired product properties by manipulating the appropriate process conditions. The first aim of this work is to demonstrate the effectiveness of a model-free feedback control strategy, referred to as model-free (mf) QbC. Direct nucleation control (DNC) and supersaturation control (SSC) are applied as a part of the mfQbC approach, which, ideally, requires only two feedback control experiments to obtain a temperature profile that results in obtaining the desired product quality. Although mfQbC provides a rapid process design, it is often suboptimal. In addition, it is shown that the experimental data generated by mfQbC can be used for process model development and kinetic parameter estimation. The validated model enables optimization-based design using the model-based (mb) QbC framework. For this case study, a population balance (PB) based process model is developed, which involves primary and secondary nucleation, growth, and dissolution, as well as a novel formulation of agglomeration, and deagglomeration of crystals. In addition to taking into account the agglomeration, the number of agglomerates is also tracked as a balance between the agglomeration and deagglomeration events. The kinetic parameters are estimated using a novel objective function formulation relying on the minimization of the difference between the measured and simulated concentrations and crystal size distributions (CSDs) and the maximization of the correlation between the simulated crystal number density and measured crystal count data obtained from focused beam reflectance measurement (FBRM). The kinetic parameters are identified based on the experimental data generated from the mfQbC, which inherently reduced the experimental effort required for the model development. The temperature profile is optimized for the fine index and agglomeration degree minimization. The repeated open-loop implementation of mfQbC- and mbQbC-designed processes showed that the batch-to-batch variation is low and the product quality is high in both cases. The proposed general framework is illustrated for the systematic quick and optimal design of crystallization processes that require temperature cycles with a low number of experiments.
机译:由于最终产品的具体和多功能质量要求,药物结晶过程的设计是一个具有挑战性的工程问题,通过严格的监管标准扩增。目前的结晶工艺设计工业标准是基于使用质量逐设计(QBD)框架,这依赖于实验(DOE)的因子设计。因此,QBD固有地产生大量资源消耗的开环结晶实验。当需要设计更复杂的操作条件,例如温度周期时,这尤其如此,这需要在DOE中需要大量的决策变量。相比之下,最近提出的质量控制(QBC)方法依赖于反馈控制算法,通过操纵适当的工艺条件直接实现所需的产品性质。这项工作的首次目的是展示无模式反馈控制策略的有效性,称为无模型(MF)QBC。将直接成核控制(DNC)和超饱和对照(SSC)作为MFQBC方法的一部分应用,理想情况下,仅需要两个反馈控制实验以获得导致所需产品质量的温度曲线。虽然MFQBC提供了一种快速的过程设计,但它通常是次优。此外,表明MFQBC产生的实验数据可用于过程模型开发和动力学参数估计。经过验证的模型可以使用基于模型的(MB)QBC框架来实现基于优化的设计。对于这种情况研究,开发了一种基于人口平衡(PB)的过程模型,其涉及初级和次要成核,生长和溶解,以及晶体的聚集和晶体的切割。除了考虑到附聚外,还将附聚物的数量作为聚集和直接阵容事件之间的平衡追踪。使用新颖的客观函数配方估计动力学参数估计,依赖于测量和模拟浓度和晶体尺寸分布(CSD)之间的差异的最小化和模拟晶体数密度与从的模拟晶体数密度之间的相关性的最大化的最大化聚焦光束反射测量(FBRM)。基于来自MFQBC产生的实验数据来识别动力学参数,其本身降低了模型开发所需的实验工作。优化温度曲线,用于精细指数和聚集度最小化。 MFQBC和MBQBC设计过程的重复开环实现显示,两种情况下,批次到批次变化较低,产品质量很高。所提出的一般框架被说明用于系统的快速和最佳的结晶过程设计,需要具有较低的实验的温度循环。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号