首页> 外文期刊>Crystal growth & design >Corona Discharge Assisted Growth Morphology Switching of Tin-Doped Gallium Oxide for Optical Gas Sensing Applications
【24h】

Corona Discharge Assisted Growth Morphology Switching of Tin-Doped Gallium Oxide for Optical Gas Sensing Applications

机译:电晕放电辅助生长形态切换锡掺杂氧化镓用于光学气体传感应用

获取原文
获取原文并翻译 | 示例
           

摘要

To match the properties of a semiconductor to a desired application, it is crucial to control its crystal structure. Here, we show that, by implementing a corona discharge in a chemical vapor deposition process, the growth morphology of gallium oxide can be adjusted to produce nanowires and layerlike and columnar crystal structures. The three morphologies can be explained by the transition from a classic chemical vapor process to a corona-assisted chemical vapor process with directed transport. Specifically, the excitation of the carrier gas by the corona discharge is exploited as a switch to transition from a vapor-liquid-solid nanowire growth mechanism to a layer by layer growth mechanism. The second switching parameter is the substrate bias which affects the directed precursor transport and enhances the growth rate. While the switching of the morphology has no effect on the crystal phase, the photoluminescence properties of the three morphologies are different. The grown structures are used as optical gas sensors at room temperature. Tin-doped gallium oxide is shown to be capable of detecting trace amounts (200 ppm) of alcohols such as acetone, ethanol, and isopropanol. The layerlike morphology provides the highest response.
机译:为了将半导体的特性与所需的应用匹配,控制其晶体结构至关重要。这里,我们表明,通过在化学气相沉积过程中实现电晕放电,可以调节氧化镓的生长形态以产生纳米线和层状和柱状晶体结构。通过从经典的化学蒸汽过程转变为具有指导运输的电晕辅助化学蒸汽过程可以解释这三种形态。具体地,通过电晕放电的载气的激发被利用为通过层生长机制从蒸汽 - 液固纳米线生长机制转变为层的开关。第二开关参数是基板偏压,其影响定向前体传输并增强生长速率。虽然形态的切换对晶相没有影响,但是三种形态的光致发光性质不同。生长的结构用作室温下的光学气体传感器。掺杂掺杂的氧化镓氧化物能够检测痕量量(200ppm)醇,例如丙酮,乙醇和异丙醇。层状形态提供最高的响应。

著录项

  • 来源
    《Crystal growth & design》 |2019年第12期|共9页
  • 作者单位

    Tech Univ Ilmenau Nanotechnol Grp Inst Micro &

    Nanoelect Inst Micro &

    Nanotechnol MacroNano POB 100565 D-98684 Ilmenau Germany;

    Tech Univ Ilmenau Nanotechnol Grp Inst Micro &

    Nanoelect Inst Micro &

    Nanotechnol MacroNano POB 100565 D-98684 Ilmenau Germany;

    Tech Univ Ilmenau Nanotechnol Grp Inst Micro &

    Nanoelect Inst Micro &

    Nanotechnol MacroNano POB 100565 D-98684 Ilmenau Germany;

    Tech Univ Ilmenau Dept Mat Elect Inst Mat Sci &

    Engn Inst Micro &

    Nanotechnol MacroNano POB 100565 D-98684 Ilmenau Germany;

    Tech Univ Ilmenau Nanotechnol Grp Inst Micro &

    Nanoelect Inst Micro &

    Nanotechnol MacroNano POB 100565 D-98684 Ilmenau Germany;

    Tech Univ Ilmenau Nanotechnol Grp Inst Micro &

    Nanoelect Inst Micro &

    Nanotechnol MacroNano POB 100565 D-98684 Ilmenau Germany;

    Tech Univ Ilmenau Nanotechnol Grp Inst Micro &

    Nanoelect Inst Micro &

    Nanotechnol MacroNano POB 100565 D-98684 Ilmenau Germany;

    Tech Univ Ilmenau Nanotechnol Grp Inst Micro &

    Nanoelect Inst Micro &

    Nanotechnol MacroNano POB 100565 D-98684 Ilmenau Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 晶体学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号