首页> 外文期刊>Carbon: An International Journal Sponsored by the American Carbon Society >Identification and isolation of carbon oxidation and charge redistribution as self-discharge mechanisms in reduced graphene oxide electrochemical capacitor electrodes
【24h】

Identification and isolation of carbon oxidation and charge redistribution as self-discharge mechanisms in reduced graphene oxide electrochemical capacitor electrodes

机译:碳氧化和电荷再分布的识别和分离作为氧化石墨烯氧化物电化学电化学电极的自放电机制

获取原文
获取原文并翻译 | 示例
           

摘要

While carbons are common electrode materials for electrochemical capacitors (ECs) owing to their abundance, affordability, and environmental compatibility, graphene is particularly desirable due to its high electronic conductivity and high surface area for double-layer charging. However, very little is known about graphene's self-discharge (SD) - the spontaneous potential loss that occurs when a device rests idle. Knowledge of SD mechanisms is key because this process limits EC applications and reliability. Herein, we show carbon oxidation and charge redistribution - charge movement to eliminate potential gradients within a material - are key SD mechanisms for reduced graphene oxide (rGO) in acidic-aqueous electrolytes. Differentiating between these phenomena proves challenging; both processes present similar SD profiles. To address this, a novel experimental protocol is developed which resets CR to hold this process constant; when applied, this protocol separates CR contributions from carbon oxidation. We thus can identify charge redistribution as the primary SD mechanism, with a smaller but important contribution (17% of original SD) from carbon oxidation. From this work, it is clear that rGO SD can be significantly reduced by oxidizing (achieved here by CV cycling) and by more fully charging the rGO material (achieved through repeated charge/SD cycles). (C) 2018 Elsevier Ltd. All rights reserved.
机译:虽然碳是用于电化学电容器(ECS)的普通电极材料,但由于它们的丰富,负担能力和环境相容性,因此由于其高电子电导率和用于双层充电的高表面积而特别理想的石墨烯。然而,关于石墨烯的自放电(SD)非常少的是 - 当设备搁置时发生的自发潜在损失。知识SD机制是关键,因为该过程限制了EC应用和可靠性。在此,我们显示碳氧化和电荷再分配 - 电荷运动,以消除材料内的潜在梯度 - 是用于酸性水电解质中的石墨烯(Rgo)的键SD机制。区分这些现象证明了具有挑战性的;这两个进程都存在类似的SD配置文件。为了解决这个问题,开发了一种新的实验方案,其重置CR以保持该过程常数;当应用时,该协议将CR贡献与碳氧化分开。因此,我们可以将电荷再分布识别为主要SD机制,具有较小但重要的贡献(占原始SD的17%)来自碳氧化。从这项工作来看,很明显,通过氧化(通过CV循环实现)可以显着降低RGO SD,并且通过更充分地充电RGO材料(通过重复充电/ SD循环实现)。 (c)2018年elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号