首页> 外文期刊>Carbon: An International Journal Sponsored by the American Carbon Society >Design and theoretical study of carbon-based supercapacitors especially exhibiting superior rate capability by the synergistic effect of nitrogen and phosphor dopants
【24h】

Design and theoretical study of carbon-based supercapacitors especially exhibiting superior rate capability by the synergistic effect of nitrogen and phosphor dopants

机译:碳基超级电容器的设计与理论研究,特别是氮气掺杂剂协同作用表现出优异的速率能力

获取原文
获取原文并翻译 | 示例
           

摘要

Carbonaceous materials have long been a key component of supercapacitor energy storage systems, and exploring heteroatom doping and its role is currently the focus of carbon-based electrode development. Here, a method of in-situ doping a phosphorus atom into a nitrogen-containing hierarchical porous carbon nanosheet is proposed, which is realized by a self-synthesis and template-assisted assembly process. Phosphorus-doping improves the wettability of the carbon material and produces defects that expose more active sites, which facilitates charge transfer of the electrode material as a whole and at the interface. Density functional theory calculations proves that P-doping improves the affinity and ionic adsorption of the carbon surface, thereby increasing the specific capacitance (242 Fg(-1)) and rate capability (70.8%). The synergistic effect of N/P co-doping provides rapid interfacial ion adsorption reactions that further improve electrochemical performance, including power density (15 kW kg(-1)) and high energy density (34.4 Wh kg(-1)) and ultra-high cycle stability (91.4%). This work opens up insights into the production of N/P co-doped carbon materials for supercapacitor applications. (C) 2019 Elsevier Ltd. All rights reserved.
机译:碳质材料长期以来一直是超级电容器能量储存系统的关键组成部分,探索杂原子掺杂及其作用是目前碳基电极开发的焦点。这里,提出了一种原位掺杂将磷原子掺杂到含氮的分层多孔碳纳米晶片中,其通过自合成和模板辅助组装方法实现。磷掺杂改善了碳材料的润湿性,并产生泄露更多有源位点的缺陷,这有利于电极材料作为整体和界面的电荷转移。密度函数理论计算证明,P掺杂改善了碳表面的亲和力和离子吸附,从而增加了比电容(242FG(-1))和速率能力(70.8%)。 N / P协同掺杂的协同效应提供了快速的界面离子吸附反应,进一步改善电化学性能,包括功率密度(15kW kg(-1))和高能量密度(34.4Whkg(-1))和超 - 高循环稳定性(91.4%)。这项工作开辟了对超级电容器应用的N / P共掺杂碳材料的洞察力。 (c)2019年elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号