...
首页> 外文期刊>Carbon: An International Journal Sponsored by the American Carbon Society >Engineering carbon-nanochain concatenated hollow Sn4P3 nanospheres architectures as ultrastable and high-rate anode materials for sodium ion batteries
【24h】

Engineering carbon-nanochain concatenated hollow Sn4P3 nanospheres architectures as ultrastable and high-rate anode materials for sodium ion batteries

机译:工程碳纳克塞纳链接中空SN4P3纳米载体架构作为钠离子电池的可监视和高速阳极材料

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Tin phosphide (Sn4P3) that identified as a potential anode for sodium ion batteries (SIBs) based on its high theoretical specific capacity mostly confronts with the huge challenges in rapid capacity decay, severe volume evolution and weak diffusion kinetics upon cycling. It is of great theoretical and practical significance to develop the multilevel structured metal phosphide anode in high performance SIBs systems. Herein, we construct a nanochain-like architecture built from hollow yolk-shell Sn4P3@C nanospheres (Sn4P3@CNF) by electrospinning method and phosphorization treatment, in which all hollow Sn4P3 nanospheres are uniformly chained to one dimensional (1D) carbon nanofibers, forming a necklace-like hybrid conductive construction. The synergistic effect between hollow Sn4P3 nanospheres and nanochain architecture not only offers unblocked transfer channels for Na+ and accelerates the long-distance electronic transmission, but also guarantees excellent electrode kinetics and accommodates volume expansion. The Sn4P3@CNF electrode delivers a highly reversible discharge capacity of 297.6 mAh g(-1) at 1 A g(-1) after 1750 cycles, 250.6 mAh g(-1) at 2 A g(-1) after 4700 cycles, as well as ultrastable cycling durability up to 14000 cycles with a capacity of 157.8 mAh g(-1) even at a high rate of 5 A g(-1). These results demonstrate the greatest cyclability reported so far on Sn4P3-based anodes for SIBs. Meanwhile, the consecutive CV measurement further confirms a capacitive electrochemical redox behavior of Sn4P3@CNF upon cycling. More interestingly, the Sn4P3@CNF electrode displays the superior cycling stability and rate capability in sodium ion full cells as combined with a high-voltage Na3V2(PO4)(3) cathode, where the full cell delivers an initial discharge capacity of 286.4 mAh g(-1) and maintains a 67.2% capacity retention after 160 cycles at 1 A g(-1), making it a great potential for practical application in SIBs systems. (C) 2020 Elsevier Ltd. All rights reserved.
机译:基于其高理论特异性容量鉴定为钠离子电池(SIBS)潜在阳极的磷化锡(SN4P3)主要面临着快速容量衰变,严重的体积演化和循环在循环后的巨大挑战。在高性能SIBS系统中开发多级结构化金属磷化阳极具有很大的理论和实践意义。在此,我们通过静电纺丝方法和磷化方法构建由中空蛋黄 - 壳SN4P3 @ C​​纳米粉末(SN4P3 @ C​​NF)构建的纳米型架构,其中所有中空的SN4P3纳米球均匀地将其均匀地链接到一维(1D)碳纳米纤维,形成项链样混合导电结构。中空SN4P3纳米球和纳克架构之间的协同效应不仅为NA +提供了拆开的传输通道,并加速了长途电子传输,还可以保证优异的电极动力学并适应体积扩展。在4700次循环后,在1750次循环,250.6mahg(-1)后,SN4P3 @ C​​NF电极在1Ag(-1)后,在1A的情况下,在250.6mAhg(-1)下,在4700次循环,除了高达14000周期的高达14000周期,甚至以5Ag(-1)的高速率,高达14000个循环的循环。这些结果表明,到目前为止,在SN4P3的SN4P3的阳极上展示了最大的可靠性。同时,连续的CV测量进一步证实了循环时SN4P3 @ C​​NF的电容电化学氧化还原行为。更有趣的是,SN4P3 @ C​​NF电极在钠离子全细胞中显示出优异的循环稳定性和速率能力,与高压Na3v2(PO4)(3)阴极组合,其中全电池提供286.4 MAH G的初始放电容量(-1)并在160次循环下保持67.2%的容量保留,使其在SIBS系统中的实际应用成为巨大潜力。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号